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Abstract—High-quality wireless communication is paramount
to coordinating flights and missions effectively on a micro-UAV
(a.k.a. drone). However, most cellular antennas are optimized for
users on the ground and have not been planned for aerial devices.
Many have studied cellular communication quality, but few works
explore the impact of altitude during a flight. Through real-world
experiments using an actual drone, we demonstrate significant
connectivity dynamics in the air for both 4G LTE and 5G NR,
and reveal that fixed-coordinate flights cannot maintain high
quality connectivity in response to those dynamics. To address
this problem, we present ASCEND, a reinforcement learning-
based 3D altitude selection scheme that maintains high-quality
connectivity during a flight over a planned 2D path without
requiring prior training. We evaluate ASCEND at multiple real-
world locations to demonstrate a notable increase in expected
throughput and a reduction in the proportion of low-quality legs
during a flight mission.

Index Terms—Unmanned aerial vehicle (UAV), drone, cellular
connectivity, real-world measurements, altitude selection

I. INTRODUCTION

Advent of high-performance microprocessors has spurred
significant advancements in micro-UAV (also known as drone)
technology in recent years. Low-cost autopilot drones have be-
come available that can operate by simply entering a 3D route
without requiring real-time human intervention. Furthermore,
advances in cellular communication in terms of both wide-
area coverage and improved data rates have enabled videos
to be streamed in real-time over cellular networks. These
advancements have made new drone-based applications such
as target tracking and mobile surveillance viable and promising
[1]-[4]. They are receiving attention for the drones’ mobility,
deployment flexibility, wide-area coverage, and ability to track
and follow [5]-[7].

Video surveillance using drones can be useful in a variety
of situations, such as regular or occasional patrols of wide
areas where installing fixed cameras would be costly and
inefficient. Drones can also be deployed for rapid monitoring
of new places, such as outdoor events, where the installation
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Fig. 1: Cellular-connected drone-based application example: surveil-
lance and patrol.

of surveillance equipment is difficult and time-restricted. Fur-
thermore, the quality of cameras and cellular networks have
become sufficient to stream high definition (HD) videos in
real-time. Therefore, the idea of using drones for surveillance
and patrol as in Fig. 1 became viable, and is no longer just a
technology of the future.

However, the viability of such missions hinges critically
on stable, high-throughput connectivity. For tasks that require
high-resolution imagery or real-time monitoring, unpredictable
signal drops triggered by altitude changes can corrupt data
streams or lower video quality below usable thresholds, ren-
dering the collected information unreliable for analysis or
immediate action.

These challenges arises fundamentally because current cel-
lular antennas are installed to serve users on the ground.
They have not been planned nor investigated for use on aerial
devices [17]. Furthermore, few works explore the impact of
altitude on cellular connectivity of drones while moving, and
even fewer use real measurements. Unreliable connectivity can
lead to loss of control or interrupted video streams, particularly
in unpredictable coverage areas. Through real experiments
(§III), we demonstrate that the communication quality on a
drone moving in the air has significant dynamics for both
4G LTE and 5G NR due to this reason'. We conducted
extensive signal quality measurements using an actual drone
at three distinct real-world locations. The results reveal that
cellular connectivity in the air does not consistently improve
or degrade with altitude, but rather exhibits irregular variations.

Based on our observations from real measurements, we find
it critical for the drones to avoid communication shadow/gray
zones during their flight, patrol, target tracking, and surveil-
lance missions [1]-[4]. To address this, we propose ASCEND,
a reinforcement learning-based 3D altitude selection scheme

IThe 5G NR we refer to in this work is non-standalone (NSA). In the
author’s experimental environment, service providers offer NSA 5G NR only.
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TABLE I: Comparison to existing research works based on key criteria

Research Work | Computational Complexity | Connectivity Consideration | 3D Path Planning Dataset Type User-Defined Path
[8] Low X X Simulation only X
[9] High X (0] Simulation only X
[10] Low X (6] Simulation only X
[11] Low X 6] Simulation only X
[12] High (6] (6] Simulation only X
[13] High (6] (6] Simulation only X
[14] High (6] (6] Simulation only X
[15] Low (6] X Simulation only X
[16] High (6] X Real-world dataset X
ASCEND Low (6] (6] Real-world dataset (6]

(§IV) that maintains high-quality connectivity during a flight
over a planned 2D path without requiring prior training. We
discuss the characteristics of measurement data to justify the
use of reinforcement learning (RL), and also analyze the
impact of the reward design.

The contributions of this paper are as follows:

o We measure cellular signal quality in the air for both 4G
LTE and 5G NR using a real drone, and analyze their
characteristics as well as their relation to uplink throughput.

o We propose a novel 3D altitude-selection scheme, ASCEND,
that allows a drone to autonomously optimize connectivity
while on its flight mission. ASCEND is lightweight, and
requires no prior learning.

o We implement ASCEND using a smartphone mounted on a
drone as a proof-of-concept, and experiment at three distinct
real-world locations to show a performance improvement of
17.87%~23.1%.

The remainder of this paper is organized as follows. We review
related work in §II, and analyze cellular connectivity in the
air in §III. The design of ASCEND is presented in §IV, and
§V evaluates ASCEND. Finally, §VI summarizes our work.

II. RELATED WORK

While many studies have explored cellular connectiv-
ity [18]-[20], only a few have investigated connectivity with
altitudes. We summarize the prior work as follows.

UAV’s cellular connectivity has been studied under aerial
base station and surveillance scenarios. Muzaffar et al. [21]
observed how 5G connectivity changes as the location and alti-
tude change on an UAV through real radio link measurements.
Homayouni et al. [22] investigated cellular connectivity of an
UAV at different altitudes and LTE bands, and analyzed how it
affects performance of ground users. However, neither studies
suggested a mechanism to autonomously adapt the altitude of
the UAV during its flight. In addition, the studies measured
cellular quality without a specific context for the application,
and the trajectory of the UAV was limited to a straight-line-
only, which is not suitable for most application purposes.
Lee et al. [23], Wen et al. [24], and Chakraborty et al. [25]
have all studied cellular connectivity of drones in scenarios
where a UAV is used as a BS. However, the first two stud-
ies conducted only simulations without actual drone flights.
Chakraborty’s research which implemented cellular networks
using actual drones offers valuable insights for our study.
Nevertheless, their emphasis on identifying UE locations and

adapting coverage over large areas does not coincide with our
study where the drone is transmitting high throughput data.

Video streaming via UAVs has been studied in a few prior
works. Bertizzolo et al. [26] proposed a closed-loop control
system for video streaming from UAVs on 5G Open-LAN
architecture. The goal is to optimize UAV’s location and
its transmission direction by minimizing uplink interference.
However, the approach is relatively abstract at a high-level
without specific consideration for application requirements of
video streaming. Naveed ef al. [5] conducted video stream-
ing experiments on LTE-connected UAVs to understand the
relation between reference signal received power (RSRP),
throughput, and handovers under surveillance scenario. This
work is most close to ours. We extend this work by considering
the altitude change of the UAV, and design a RL based altitude-
selection scheme that maintains high-quality connectivity un-
der channel variation.

UAV path finding is another topic of interest related to
our work. However, most studies in UAV path finding are
inadequate in addressing the issue of UAV cellular connectivity
in real-world environments. Some studies focus on drone path
planning but fail to take into account connectivity while in
flight [8]-[11]. Mardani et al. [15] investigated the problem of
path planning considering cellular connectivity in UAV-based
video streaming, and Li ef al. [16] addressed communication
constraints between UAVs and UGVs by proposing a memetic
algorithm for path planning in cooperative systems. However,
neither studies considered altitude.

Another study by Wang ef al. [12] investigates trajectory
planning for UAV-assisted data collection using a Double Deep
Q Network (DDQN) approach. Yin et al. [13] investigates
intelligent trajectory design for UAV-aided communication
using a reinforcement learning approach to maximize uplink
sum rate. Lee et al. [14] explores deep reinforcement learning
for UAV trajectory design, focusing on optimizing the UAV’s
path to serve mobile ground users. These three studies differ
from our scenario in that the drone either collects data locally
or functions as a base station, and they all share the common
limitation of having high computational complexity.
Summary of comparisons to related works are presented in
TABLE 1. Most importantly, the majority of the previously
mentioned studies rely solely on simulation data rather than
real-world data. In the following section, we demonstrate the
novelty of our work by showcasing the characteristics of a
real-world dataset, which was collected from actual flights
of drones and mobile phones. Moreover, prior studies allow

Authorized licensed use limited to: Chung-ang Univ. Downloaded on August 07,2025 at 00:50:29 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3594092

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025

—Location 1
- Location 2
-+ Location 3 ;-

RSRP (dB)

-85
20 30 40 50 60 70 80 90

Altitude (m)

Fig. 2: RSRP according to altitude for three different locations,
neither monotonic nor consistent.

drones to autonomously alter their flight paths, which imposes
limitations on the scenarios. In most missions requiring cellu-
lar connectivity, the user needs to direct the drone to specific
locations (e.g., surveillance using drones).

Our thorough literature review highlights a gap in solutions
that allow user-defined missions while adaptively optimizing
altitude for robust connectivity in real-time using lightweight,
data-driven techniques. This motivates our proposal, AS-
CEND, designed specifically to address the challenge of main-
taining high-quality cellular links for drones by dynamically
selecting the optimal flight altitude during missions without
prior training data.

III. PROBLEM AND MOTIVATION

We first demonstrate the dynamics in cellular connectivity
of drones to motivate our work. We then analyze the measure-
ment data to make observations on how to design ASCEND.

A. Cellular Connectivity in the Air

To investigate cellular connectivity in the air, we mount
a LTE/5G compatible smartphone on a drone and measure
RSRP, RSSI, and SNR values2, the commonly used cellular
signal metrics that we can access on a smartphone [5], [21],
[22], [27]-[29] at a rate of 2 samples per second (2 Hz). The
three values have similar trends (more on this in §III-B), and
thus here we show RSRP as an example representative metric
for brevity. We describe the equipment we use and our detailed
experimental setup later in the evaluation section (§V).

Preliminary Experiment 1: We examine cellular connectivity
while varying the drone’s altitude. The drone moves up
and down from 20 meters to 90 meters above the ground at
three different locations. During this vertical movement, the
drone’s coordinates in 2D (horizontal position) do not change.
Fig. 2 plots the RSRP changes according to altitude. Contrary
to intuitive expectations, the results were neither monotonic
(increasing nor decreasing) nor constant. Furthermore, the
altitude with the highest RSRP is not static. At location 1,
the drone has the highest RSRP value at an altitude of around
25 meters. However at location 2, it is around 40 meters, and
at location 3, peaks are at 35 and 90 meters.

2RSRP, RSSI, and SNR each stand for Reference Signal Received Power,
Received Signal Strength Indicator, and Signal to Noise Ratio, respectively.
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Fig. 3: Boxplot of RSRP on each of the four distinct routes, 50+
drone flights per route.

These observations motivate the need for a drone to change
its altitude for better connectivity while performing its mission.
Thus, our goal is to find an appropriate altitude to maintain
good connectivity at run-time while a drone is on its flight
mission. Then, the next question would be, “Can we find and
use the best altitude for the mission based on historical data?”.
We answer this through our next experiment.

Preliminary Experiment 2: We configure a drone to fly static
3D routes repeatedly. We choose a total of 4 short routes, and
the drone fly over 50 times for each route while measuring
the cellular signal metrics. For example, Fig. 3 is the box plot
of the RSRP obtained from this experiment (similar for RSSI
and SNR). It shows that, although there are some trends in
changes in RSRP in relation to location and altitude, RSRP
varies significantly over time; i.e. over 50 iterations of the
measurement shown by the long vertical boxes. Furthermore,
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Fig. 5: Cellular network parameters (SNR, RSSI, RSRP) and their
correlation with uplink throughput

the distributions of RSRP differ significantly per route as
shown in Fig. 4. These results indicate that selecting the best
route through an a priori measurement cannot guarantee a
good path at later iterations. Therefore, our approach is to
adopt machine learning to train a model that can predict the
best path for the drone based on real-time data. Our intuition
is that, in general, a dataset with such a probability distribution
is well-trained by machine learning [30], [31].

B. Uplink Throughput and Parameter Selection

To continuously stream high-quality video from the drones,
it is important to maintain sufficient uplink throughput. Ideally,
if we know the uplink throughput at every location, we can
easily and accurately select a suitable path for a mission.
However, the achievable throughput at a specific location is a
value that can only be known when large enough data is being
(or has been) sent from that location. To design a mechanism
that can select an appropriate altitude for the drone in the air
during its mission, what would be need is a parameter that is
readily available to infer or estimate the achievable throughput
without having to try it out a priori. On the other hand, cellular
signal metrics such as RSRP, RSSI, and SNR are already being
measured periodically by the cellular system and available on
end devices®. Therefore, we analyze these measurements to
identify which parameter is appropriate, among those that can
be obtained on recent smartphones for both LTE and 5G NR,
for representing uplink throughput.

We install iPerf3 on both a smartphone and a laboratory
server, configuring it to transmit TCP uplink packets from
the smartphone to the server. The reporting interval in our
setup is 1 second, and the total test duration is approximately
300 seconds. We simultaneously measure the uplink through-
put on the smartphone and use our custom mobile application
to assess RSRP, RSSI, and SNR values. Fig. 5 plots the data
where the X-axis is time, the left Y-axis is uplink throughput,

3 Android PhoneStateListener API, https:/developer.android.com/reference/
android/telephony/PhoneStateListener
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Fig. 6: RSRP and uplink throughput during handover. Handover
occurs at 252 and 438 seconds, identified by cell-ID changes.

and the right Y-axis is for RSRP, RSSI, and SNR. The results
show that RSSI, RSRP, and SNR all exhibit similar tendencies,
moving up and down at similar times and locations. However,
there is a slight difference in how well they mimic the uplink
throughput. Among the three parameters, RSRP shows the
highest correlation with uplink throughput, with a correlation
score of 0.941.

Another consideration is handover. Since RSRP is the
strength of a reference signal from a cellular base station, it
may change abruptly when handover occurs. To verify this, we
conduct an experiment on a path long enough for handover to
occur (i.e. crosses the cell boundary), and measure RSRP and
uplink throughput. Fig. 6 plots the result where the X-axis is
time, left Y-axis is for scaled RSRP and throughput, and the
right Y-axis is the current cellular network ID (ECI). The ECI
values indicate that handover occurs at 252 and 438 seconds.
Specifically, RSRP decreases as the drone approaches the cell
edge, followed by a handover. Then, RSRP increases again as
the drone moves into the new cell. Nevertheless, even with
handover, RSRP follows uplink throughput well. Therefore,
in this work, we decided to use RSRP as the main proxy for
assessing cellular connectivity and estimating the achievable
throughput to find an altitude for the drones to maintain stable
and high-quality connectivity.

C. Preliminary Results

We summarize the results obtained from the experiments in
Section $III as follows.

1) Among the common cellular signal metrics on a smart-
phone, RSRP correlates best with uplink throughput.

2) RSRP varies non-monotonically depending on altitude
and time for same 2D coordinates, but

3) RSRP tends to follow a certain distribution at each
location over long term.

For these reasons, our approach is to solve the problem using
reinforcement learning, described in the next section. We argue
that by cleverly adjusting the altitude, a UAV can achieve
significantly better throughput throughout its flight.

IV. ASCEND DESIGN

We present the design of ASCEND including its application
requirements, components, reward, and their justifications mo-
tivated by the observations and insights obtained in §III.
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while flying along the pre-configured 2D path.

A. Application Requirements

Consider a scenario where we need to quickly deploy
a drone for continuous reconnaissance or patrol of a new
site. The drone starts working at a new location immediately
with no upfront data collection period. Accordingly, data for
pre-training cannot be acquired, and the drone must start
flying only with given 2D GPS coordinates. A solution must
be real-time because the drone is constantly moving for its
mission; the drone cannot stop-and-wait for next route to be
calculated. Also, it should be light enough to be implemented
on an embedded device such as the drone itself or a micro-
processor/smartphone attached to the drone. Finally, 5G NR
is not currently available everywhere in the world; there are
many places where only LTE is used, or 5G and LTE are
mixed with varying base station configurations. Accordingly,
both cellular systems must be supported without modification*

Therefore, the goal is to design an autonomous altitude
selection scheme for drones that can maintain high-quality
cellular connectivity with no pre-training, has low delay, and
is lightweight. From this point of view, commonly known
behavioral cloning [32] and generative adversarial imitation
learning techniques [33] require immoderate amount of pre-
training data. In addition, the commonly used DQN [34],
PPO [35], and SAC [36] methods require excessively large
amount of resources (memory and computational cost) beyond
the capabilities of mobile devices because they use a deep
neural network. These techniques are not suitable for the
scenarios we are targeting. To this end, ASCEND adopts
Q-learning as a lightweight and low-latency reinforcement
learning solution. We show the memory usage, computational
cost, and the time it takes to accept new data and learn from
a place in §V.

B. ASCEND Overview and its Components

Consider a scenario where a drone has a predefined route in
2D which consists of several waypoints. ASCEND completes
the 3D path by appropriately determining the altitude of each
waypoint in the drone’s 2D route.

4Our approach is independent of LTE or 5G, and is compatible with both.
We expect to have larger performance gains with stand-alone 5G because,
compared to LTE, 5G signals have stronger directivity.

ASCEND consists of four main components as shown in
Fig. 7: The user enters the initial setting values suitable for
his/her task scenario (User initial configuration). Accordingly,
the drone starts flying, while at the same time collecting and
analyzing cellular information (run-time data collection and
processing). ASCEND learns using the collected data (real-
time learning), and determines the next altitude so that the
system can operate with better connectivity (route selection).

User initial configuration: To start a mission, the user inputs
a 2D flight route, and can also specify a range of altitude
candidates (e.g. every 20 meters from 30 to 150m) that can
be selected by the drone. This initialization process needs
to be done only once in advance, and can be altered later
if necessary. ASCEND has high scalability because it is not
affected by the number of waypoints or complexity of the path.
In addition, it is not necessary to input any prior training data
for learning.

Run-time data collection and processing: ASCEND uses a
custom Android mobile application to obtain the RSRP, RSSI,
and SNR values and the network type during its mission’.
Then, according to the drone’s flight path, ASCEND dissects
the collected data between each waypoint (using altitude and

time) and use it as data for subsequent learning.

Real-time learning: ASCEND learns the obtained data at
run-time using Q-learning, and predicts the connectivity on
the path. This process is lightweight, requires little memory,
and has low latency in calculating the next route. The learning
method of ASCEND using Q-table improves the connectivity
of the drone by remembering the experienced route and
searching for a new and better route.

Route update: As the result of the previous learning part,
ASCEND calculates the next altitude in real-time. That is, the
3D path is completed by determining the altitude of each
waypoint to pass next. Then, the drone flies automatically
while changing its altitude for good connectivity.

C. Q-learning Design
Here we design the Q-learning for ASCEND.

5 Android phones can read RSRP/RSSI/SNR values and their network type
(LTE or 5G NR) as long as they satisfy Android API level 29 or higher.
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Reward function of ASCEND is defined as Eq. (1).
Reward = avggepp — Stdrsgp + mingsgp, (D

During its mission, the drone calculates the reward for each
path segment between waypoints, using avgrsrp. Stdrsrp,
and mingsgp, wWhich are the average, standard deviation, and
minimum of the RSRP values encountered while traversing
each segment.

e avgperp: Intuitively, higher average RSRP is preferred since
we can expect higher throughput (§III). Thus, a path with
higher RSRP on average has a larger positive reward.

o stdrspp: Larger deviation means that the drone will experi-
ence frequent throughput changes during its mission. This is
unfavorable since the system may not respond correctly to
the mission it was targeted for. Therefore, it takes a negative
reward so that a path with lower deviation is preferred.

o mingsgp: In addition, the system should avoid disconnections
or too-low-quality connections at any instance of its mission
even if the overall average quality is reasonable. Therefore,
to maximize the min. RSRP, it is set as a positive reward.

Calibration between LTE and 5G data: As of 2023, 5G
coverage is far below that of LTE, and thus a 5G user device
often encounters places where it has to fall back to LTE.
For this reason, ASCEND aims to operate well regardless of
whether it is under LTE, 5G, or LTE & 5G mixed (often using
a single base station in non-stand alone mode) coverage. In
general, 5G NR has higher uplink throughput than LTE for the
same RSRP value. Therefore, we calibrate the RSRP value
in consideration of the network type to which the drone is
connected while flying the corresponding route. The drone can
make a decision on whether to opt for a route within the LTE
network having a better RSRP or to follow a route within a
5G NR network, even if the RSRP is slightly inferior.

In order to correct the throughput gap between LTE and
5G with same RSRP value, we need to derive the relationship
between RSRP and uplink throughput for LTE, 5G, and mixed
networks. For this purpose, we measured 13,605 samples of
throughput and RSRP for each network type on a Samsung
Galaxy S22 smartphone. Our measurement data include sam-
ples with mobility at various altitudes and also in the presence
of handover. Then, we approximate the measurement data as,

Thrugrg = Po + 1 * RSRP g + e
Thru5G = 50/ —+ ﬁll * RSRP5G + e

Thruprr and Thrusg are the uplink throughput of LTE and 5G
NR, respectively. Also, B9, Bo’, B1, and 3" are the coefficients
of linear approximation. Lastly, ¢ and e’ are errors caused
by the linear approximation. From our measurement data,
the coefficients are calculated to be; 3y =93.076, 5, =0.8873,
Bo' =145.64, and 5, =1.244. Through this, we calibrate an
RSRP value measured in LTE into an RSRP value in 5G
which is expected to have the same throughput. ASCEND uses
this calibrated value (converting LTE RSRP to 5G RSRP)
for learning so that the same reward equation can be used
regardless of the network type, i.e., LTE, 5G NR, or mixed.

Flexibility of ASCEND: ASCEND manages a Q-table of
size, {state} x {action}. In our scenario, we define the state

2

as {waypoints} x {altitude_candidates}. This Q-table setting
allows the user to easily set and change routes by simply
adding or removing waypoints. Also, by modifying the altitude
candidates, the user can limit the altitudes of the flight area
where the drone is flying. Furthermore, depending on the
scenario, it is even possible to learn using rewards other
than the ones we have presented. For example, at the cost of
allowing a little queuing delay, the user can put more weight
on the average RSRP for higher throughput requirements
such as transmitting a hologram or 360-degree camera data.
Conversely, it is also possible to give more weight to the
minimum RSRP when the user wishes to disallow receiving
low-quality images such as when using the transmitted vision
data for other machine learning purposes.

Example Scenario: We explain the operation of ASCEND
using an example scenario. In this example, the user performs
a surveillance mission within a square area. The user selects
a total of four waypoints and sets altitude candidates of
50, 70, and 90 meters based on the terrain and altitude
restrictions in their country. Therefore, we have a total of 12
states (4 waypoints x 3 altitudes). The action consists of three
possible altitude choices, so the user’s Q-table is configured
as a 12 x 3 matrix.

Each entry in the Q-table represents the expected reward for
taking a certain action (choosing the next waypoint’s altitude)
from the current state (the current waypoint and altitude of
the drone). For instance, the value at position (5,1) of the
Q-table indicates the expected reward if the drone is at the
second waypoint at an altitude of 70 meters (5), and the next
action is to choose an altitude of 50 meters (1).

When the drone actually chooses this action, it measures
the RSRP during the movement to the next waypoint and
calculates the throughput using the Eq. (2). The value is then
plugged into the Eq. (1) to compute the reward, which is used
to update the Q-table. As the mission progresses, the drone se-
lects the best action from the Q-table or occasionally explores
new actions, continuously updating the table to always search
for the optimal path.

D. Discussion

Image quality due to altitude change. We use the surveil-
lance scenario as an example to demonstrate the use of
ASCEND, which changes the drone’s altitude. A common
concern is that the surveillance capability may deteriorate as
the drone changes its altitude. To investigate this concern, we
mount a camera on a drone and analyze the images taken at
different altitudes (§V-D). Our analysis shows that there is
no significant deterioration in image quality due to altitude
change, within the legal ranges of altitudes that we use, with
cameras comparable to today’s latest smartphones. Detailed
analysis results can be found in §V-D.

Energy/Battery consumption. Another concern is that the
altitude change may result in additional battery consumption,
impacting the energy efficiency of the drones. To investigate
this question, we analyze the amount of battery consumed by
the drone as it flies over various routes (§V-D). Our results
show that, although the altitude change does have an effect on
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(a) Argosdyne Aquilar drone (b) M16 drone controller

(c) Battery and Velcro

(d) Phone attached drone

(e) Drone battery report from
controller

Fig. 8: Experimental equipment

(a) Experiment location 1  (b) Experiment location 2

Fig. 9: Experiment locations 1, 2, and 3 (Map details anonymized for review)

the battery consumption, the effect is relatively insignificant
compared to the total path length of the 2D route and the
environment in which the drone operates (e.g. wind). In other
words, the total 2D path length and the wind factor dominates
the energy consumption, and the altitude change is only a
small fraction traded for improved uplink throughput. Detailed
results can be found in §V-D.

V. EVALUATION

We evaluate ASCEND by comparing it against an exhaustive
search (ES) and a random jump (RJ) schemes at three distinct
real-world locations. We also discuss the implications of
altitude change on image quality and battery consumption.

A. Experiment Setup

We use an Argosdyne Aquilar drone with an Android-based
M16 controller (Figs. 8a and 8b), which can be configured to
fly automatically along a pre-defined GPS route by specifying
the coordinates of waypoints. During a flight, the drone moves
only forward in a typical surveillance scenario. For example, to
turn right, the drone changes its heading to the right and then
proceeds forward. Consequently, the smartphone mounted on
the drone rotates as well. The smartphone is always aligned
with the front direction of the drone. Moreover, the drone flies
at a constant speed of 5m/s. These settings remain consistent
across all experiments in this paper. We implement ASCEND
and the cellular data collection application on a smartphone,
and mount the phone on the drone (Fig. 8d). We use two
smartphone models, the Galaxy note 9 and Galaxy S22, and
develop the applications using Android API level 29.

During the drone’s flight, a smartphone application at-
tached to the drone records GPS, altitude, and signal strength
information (such as RSRP). The results from the drone’s
repeated flight experiments are parsed using MATLAB, and
the recorded altitude and rewards for each path are calculated
to update the Q-table. In the Q-learning process, the learning
rate is set to 0.1, and the probability of selecting a new path

150 (m)
43.73 (m) s
50 (m)

Qe

55.14 (m)

[@ Waypoints | L 60 (m) 150 (m) ., &
L .

® :Waypoints ® Waypolnts

(c) Experiment location 3

Fig. 10: Challenges from real-world experiments.

(epsilon) is linearly decayed from 1 by 0.01 at every 100th
step.

We conduct experiments at three distinct locations: two
urban and one suburban environments. The two urban en-
vironments are located close to each other and have many
buildings that can affect the signals. In contrast, the suburban
environment is more remote and does not have tall buildings
or other reflective obstacles around.

First location. We select a rectangular flight path with four
waypoints of size 43.73x55.14 meters within a university
campus with some surrounding buildings®. We use four al-
titude candidates, 30, 50, 70, and 90 meters from the ground7
for this experiment, but the user may choose any candidates
within the legal range that suits their application requirements.
We illustrate a schematic of the experimental site in Fig. 9a.
At this location, measurement includes data for both LTE and
5G NR.

Second location. We evaluate ASCEND at multiple environ-
ments to show that the reward function we designed is not
limited to a specific place and the scheme can be generalized.
The second location is shown in Fig. 9b, and its size is 60 x 50
meters. Since the intention is to evaluate under a sufficiently
different environment, we use a different smartphone (Galaxy
Note 9), a different network type (LTE only), and a different
TSP (Telecommunications Service Provider). In addition, we
also change the altitude candidates to intervals of 10 meters at
30, 40, 50, and 60 meters from the ground. Note that ASCEND
is not limited to four waypoints nor four altitude candidates;
any number of waypoints and altitude candidates can be used;
We use the same number for clear comparison, understanding,
and presentation of the results.

Third location. This a suburban area far from the first two

6Choosing an experiment site require considerable effort. Our university
campus is located in a large city where most areas are flight-prohibited zones.
For safety reasons we had to avoid roads, and tree branches caught our drone
multiple times as shown in Fig. 10.

7Going above 150 meters would require military permission at our site.
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Fig. 11: Change of RSRP over episodes (Location 1)

locations, with a larger size of 150 x 150 meters as shown in
Fig. 9c. At the third location, we use the same experimental
settings as in the first location, except for the altitude can-
didates. We perform an extended-altitude scale experiment at
60, 90, and 120 meters from the ground at this location.

For comparison against ASCEND, we implement two base-
line schemes: an exhaustive search (ES) scheme and a random
jump (RJ) scheme; due to lack of comparative prior work with
the same goal. In ES, the drone flies through all possible paths
once in advance, then calculates and follows the best path
among those paths. Thus, unlike ASCEND, ES needs to go
through all routes once in advance. In addition, when using
the ES scheme, the drone flies on a fixed route, making it
impossible to change the route until all new possible routes
have been examined again. We develop two different ways
to choose a best path in the ES scheme. The first is RSRP,,,-
based ES which picks the path with the highest RSRP average
for better throughput. The second is reward-based ES which
picks the path with the highest reward from Eq. (1). In the
RJ scheme, the drone changes its altitude randomly when it
transmits video with a quality lower than the reference quality
predetermined by the user.

In total, we fly the drone more than 71050 times for the eval-
uation of ASCEND. The collected measurement data includes
RSRP, altitude using a barometric pressure sensor, altitude
using GPS, latitude, longitude, cellular base station ID (ECI),
RSSI, RSRQ, CQI, and SNR, at a rate of 2 samples per second
(2 Hz). The data and the software for the measurement have
all been uploaded to GitHub, and will be made open-source
for validation and public use.

B. ASCEND Performance

We evaluate the performance of ASCEND in several aspects.
For convenience of explanation, drone test paths are named as
follows: a vertex of a polygon becomes a waypoint, and the
altitude of a waypoint is used as the name of that waypoint.
For example, if the route name is {30, 50, 90, 30}, the drone
flies along a 4-waypoint path, visiting waypoints at altitudes

of 30, 50, 90, and 30 meters in order. )
First, we check whether ASCEND learns correctly in the

direction we intend. Fig. 11 plots the average RSRP, minimum
RSRP, and the proportion of flight legs with low RSRP on the
paths selected by ASCEND as learning progresses. The X-axis
is the episode index, left Y-axis is for RSRP, and the right
Y-axis shows the percentage of the interval on the path that
experienced RSRP less than -95 dBm. As learning progresses,
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Fig. 12: Throughput comparison of ASCEND, ES, and RJ, trace-
driven estimate based on measured RSRP (Location 1).

the average RSRP increases and the rate of the interval with
low RSRP fell. Also, the lowest RSRP experienced in that
episode has improved. As a result, the probability of a sudden
cut-off in the corresponding path is significantly reduced.
Also, the proportion of flight legs with low throughput is
lowered. This shows that ASCEND learns the real-world data
as intended in our reward design.

Next, we compare the performance of ASCEND with the
baseline schemes ES and RJ. Fig. 12 plots the expected
throughput of the three schemes based on the measured RSRP.
It shows that the path selected by ASCEND continues to
be superior to that of RJ, which means simply avoiding
the low-performance routes reactively is insufficient and a
better altitude should be predicted proactively. ASCEND does
experience lower performance than ES in the early part of the
episodes because ES has information about all routes in ad-
vance. However, ASCEND improves over time and has higher
performance at later episodes because the ES uses fixed routes
and does not respond well to changes in connectivity while
ASCEND adapts using reinforcement learning. The average
expected throughput of the first 5% section of ASCEND was
35.85 Mbps, but as learning progressed, the average expected
throughput of the last 5% section was 42.26 Mbps, showing a
performance improvement of about 17.87%. The result shows
that if the drone continues to fly the same static 3D route as in
ES, the temporal dynamics may worsen the performance and
the opportunity to move to a better route is lost.

TABLE 1II presents the performance gains of ASCEND
compared to other schemes. The first scheme is ES using
RSRP,,,, which selects the route with the highest average
RSRP after flying every route once. The second scheme is also
ES but using our reward design (Eq. (1)), and the third is RJ.
We calculate the estimated performance the drone experiences
when flying each path using the measured path data and
Eq. (2). We compare the average expected throughput and the
ratio of expected video quality using the recommended bit rate
table provided by YouTube [37].

First of all, ASCEND and RJ do not have a fixed
flight path, whereas the RSRP,,, based ES selects the path
{50, 30, 30, 70}, and the reward-based ES selects the path
{90, 30, 30, 70}. ASCEND achieved a higher throughput,
9.94% to 23.1% higher compared to the other schemes. It
is worth noting that even though ES requires extensive pre-
searching, ASCEND outperforms ES in terms of performance.
This can be attributed to two main factors. Firstly, RSRP
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[ [ ASCEND | RSRPuyg based ES | Reward based ES | RJ |
Selected Route No fixed route 50, 30, 30, 70 90, 30, 30, 70 No fixed route
Average throughput (Mbps) 42.36 38.53 36.96 34.41
. . . . 4K (2160p) @60 FPS (%) 9 0.5 0.25 0
A"a‘labl‘ztgzgf‘io%‘f;l)“y ratios 3 160p) @30 FPS (%) 3775 35 7875 3184
¢ 1440p @60 FPS (%) 53.25 64.5 71.5 68.16

TABLE II: Calculated throughput and video quality for each scheme

[ [ Initial [

1 month later

Reward based ES: Route(ES ) Reward ranking Reward ranking Lowest RSRPof Route(ES,) | Lowest RSRPof best route
90, 30, 30, 70 15t /256 19374/ 256 -96 dBm -81 dBm

RSRP 4y, based ES: Route(ESqayg) | RSRPgye ranking | RSRPg, ranking | RSRP,yg of Route(ESgyg) RSRP,y of best route

50, 30, 30, 70 15t /256 59th /256 -84.31 dBm -77.66 dBm

TABLE III: Performance of exhaustive search schemes over time

values collected during each drone flight using the ES method
may not accurately represent the path due to RSRP fluctua-
tions. Secondly, RSRP tendencies can change over time, which
is discussed further in §V-C.

In the first experimental location, an urban scenario, the
average throughput is relatively high, allowing for the trans-
mission of videos at 1440p @60 FPS or higher regardless of
the scheme used. However, the difference becomes evident in
the distributable video quality ratios. Using other comparison
schemes, the transmission of 4K (2160p) videos is possible
only within a range of 28.5% to 35.5% during the mission
flight, while with ASCEND, the transmission of 4K (2160p)
is feasible for 47.75% of the time. This demonstrates that
ASCEND not only increases the average throughput but also
significantly impacts the ratio of video quality that end-users
can experience. Moreover, if an user needs to transmit even
higher quality videos, for example holograms or 360-degree
camera footage in the near future, ASCEND will be well-suited
to handle the higher throughput requirements. In summary,
even when flying the same 2D surveillance path, ASCEND is
capable of transmitting higher video quality by selecting the
most appropriate altitudes.

Limitation of exhaustive search. When it comes to a long-
term scenario, exhaustive search has another weak point. In the
exhaustive search methods, the drone flies along a fixed route
determined initially. However, if the monitoring is prolonged,
the wireless channel may change due to changes in surround-
ing conditions. In this case, there is no way for the drone
to switch to another route unless the drone performs a new
exhaustive search. In order to confirm this, we experimented
again at the same location approximately a month later and
re-examined all possible flight paths.

TABLE III shows the performance of exhaustive search
schemes over one month stretch. The route {90, 30, 30, 70}
previously selected by reward-based ES (Route(ES,)) is no
longer the best, and in fact exhibits the 1937¢ reward out of a
total of 256 possible routes. This means the drone is using one
of the worst paths available. Furthermore, the lowest RSRP
(the larger the better) experienced during Route(ES,) is -96
dBm while there exists a route that has a lowest RSRP value of
-81 dBm among the routes in our 1-month-later measurement.
Meanwhile, the route {50, 30, 30, 70} which had the highest
average RSRP (Route(ES,,,)), also could not avoid the perfor-

mance drop. The drone flying along the Route(ES,,,) achieves
an average RSRP of -84.31 dBm, ranking only 59" out of 256
possible routes, while the route with the best average RSRP
among 256 routes achieves -77.66 dBm. Putting all together,
we conclude that a flight with a fixed route through exhaustive
search is greatly affected by environmental changes as the
route cannot be changed unless a new exhaustive search is
performed.

Computational cost. To profile the computation cost required
to operate ASCEND, we run ASCEND using the measurement
traces on an Intel i5-8500 3.00 GHz CPU without a GPU.
As summarized in TABLE IV, the peak CPU usage was only
16.9% during training, required only 15.3 MB of RAM, and
the average time to find the next path was 10.46 ms. We believe
that ASCEND is lightweight and fast enough to run on the
drones themselves.

C. Generalizability of ASCEND

Different settings. To show that ASCEND works well under
different settings without modifying the reward design, we
present Fig. 13 obtained from location 2. We differ not only
the location, but also the phone, paths and their length, carrier
and network type, as well as the altitude candidates to four at
30, 40, 50, and 60 meters. The results exhibit similar trends as
with Fig. 11. As the episode progresses, the drone obtains a
higher RSRP on average, and the minimum RSRP experienced
by the drone during its mission improves. Consequently, the
ratio of flights experiencing low RSRP is also reduced.

Different environment. We next move to a suburban envi-
ronment at location 3. This is an open area with no large
buildings, and there are no obstacles around that can cause
meaningful reflections. Fig. 14 plots the expected throughput,
which has similar tendency as the previous results from urban
environments. Random jump or simply avoiding whenever a
low RSRP is experienced is still insufficient to obtain high
throughput. While ASCEND chooses a path that can achieve
higher throughput as learning progresses, ES does not improve
over time since it lacks the opportunity to choose a new path.

One notable characteristic in this environment is that while
flying, the RSRP experiences a sudden and temporary drop
even without any change in altitude. In particular, there are a
number of samples with RSRP measured below -100 dBm, and
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TABLE IV: Resource usage footprint
and inference time

Fig. 13: ASCEND results at a different location
with different settings (Location 2)

Fig. 14: Throughput comparison over time
(Trace-driven estimate, Location 3)

[ Altitude | 30 m [ 50 m [ 70 m [ 90 m
Snapshot
BRISQUE 46.58 48.42 51.54 49.47
NIQE 3.19 4.27 473 4.85
PIQE 38.92 39.02 47.26 50.24

TABLE V: Impact of altitude on image quality. Today’s cameras with optical zoom are sufficient for surveillance purposes within the

considered range of altitudes (i.e. 30~90 m).

the lowest RSRP experienced during the mission is -139 dBm.
In this case, the drone will experience a sharp drop in uplink
throughput. Nevertheless, ASCEND makes the proportion of
flight leg that experiences RSRP below -100dBm to only
1.15%, and the average value of the lowest RSRP during the
mission is -97.17 dBm when using ASCEND. This indicates
that ASCEND 1is not over-fitted to a specific setting and can
be used in other places without coefficient or reward changes.

We would like to emphasize that, the locations where
we have conducted our experiments are highly populated
metropolitan areas with one of the world’s best LTE/5G
coverage where it is rare to find outdoor areas with poor signal
(within legal limits for UAVs). Furthermore, it is against regu-
lations to fly UAVs in area with many buildings. We anticipate
that our proposal will show significantly larger improvement
in areas with sparser cell-tower placements and/or in area with
many tall-buildings (where we are not allowed to fly currently).

D. Impact of Altitude Change

Monitoring performance We analyze the camera’s image
quality change due to altitude and the resulting reconnaissance
performance. For this purpose, we mount a Galaxy S22 smart-
phone on the same drone and record images at altitudes of 30,
50, 70, and 90 meters, respectively. In our target scenario, we
assume that the drone is equipped with a typical smartphone-
grade camera capable of optical zoom. TABLE V presents
some of the images taken in the same area using only the
different optical zoom levels. We experiment with drones at
night to mimic a surveillance scenario.

We show how much the images are degraded through the
following indicators: BRISQUE [38], NIQE [39], and PIQE.
We randomly capture 10 images from the surveillance video
and take average for each value using MATLAB. TABLE V

[ Route Name [ Action | Usage (mAh) |

30, 30, 30, 30 (flat) | takeoff and landing 174

horizontal flight 208
50, 50, 50, 50 (flat) | takeoff and landing 218

horizontal flight 207
70, 70, 70, 70 (flat) | takeoff and landing 263

horizontal flight 209
90, 90, 90, 90 (flat) | takeoff and landing 311

horizontal flight 216
30, 50, 30, 30 whole mission 350
30, 70, 30, 30 whole mission 367
30, 90, 30, 30 whole mission 405
30, 70, 30, 70 whole mission 385
30, 90, 30, 90 whole mission 466

TABLE VI: Battery usage for different routes

[ Route Name | Usage (mAh) |
30, 30, 30, 30 660
30, 30, 30, 30 (strong wind) | 694
30, 70, 30, 70 675
30, 90, 30, 90 684

TABLE VII: Battery usage for larger routes

confirms that each indicator does not change significantly
depending on the altitude, showing that the photos taken by
zooming in the same area have similar quality.

Battery consumption. We analyze two cases of battery usage
in drones depending on the altitude. The first is the change in
battery consumption that can occur when flying at an altitude
different from the existing monitoring path; i.e. does flying at
lower or higher altitudes change battery consumption? Next,
we analyze the amount of additional battery consumption
for the action of altitude changes. As shown in Fig. 8e, we
measure the battery usage for each route using the cumulative
battery usage provided by the drone controller.

First of all, TABLE VI shows that there is no significant
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difference in battery consumption regardless of the altitude
when the drone is in horizontal-only flight. For the altitude
changes, the difference in battery consumption between the
route with the most frequent change and the route with
the least change is only 116 mAh. On average, it shows a
difference in battery consumption of about 23 mAh. That only
accounts for a small percentage of the total mission and does
not significantly reduce the drone’s efficiency.

Finally the drone’s battery consumption is ultimately deter-
mined by the fotal flight time, so the effect of altitude changes
diminishes as the length of surveillance route increases. In
order to show this, we expand the monitoring area into the
size of 330x250 meters (4*" location). TABLE VII shows
that the effect of altitude change is clearly reduced as the
drone’s surveillance route lengthens. In addition, we are able
to confirm by experience that this level is even smaller than the
battery consumption variance caused by strong winds. From
these observations, we conclude that the extra battery con-
sumption caused by the drone’s altitude change is insignificant.

E. Discussion and Future Work

Our results demonstrate that ASCEND can achieve higher
video quality in real-world applications. The duration of time
during which only low-rate transmission can be supported
is significantly reduced, leading to more consistent high-
resolution streaming.

One limitation is that the size of the Q-table increases with
each additional waypoint and altitude level, which extends the
time required for convergence. As a trade-off for allowing the
user to define their own path, this limitation becomes more
pronounced as the complexity of the path increases. However,
this is a common limitation that also applies to methods like
exhaustive search, as the number of possible paths naturally
increases. Nevertheless, the fundamental operational mecha-
nism of ASCEND remains unaffected by this limitation.

Future research could explore methods like pruning tech-
niques by incorporating additional information, such as base
station locations, to reduce the computational burden and
optimize performance. Additionally, this highlights a potential
new area of research that could focus on maintaining user-
defined paths while ensuring seamless communication.

VI. CONCLUSION

ASCEND is a technique for a drone to execute its mission on
a given 2D path with good cellular connectivity by changing
its altitude. We conducted extensive outdoor flight experiments
with a real drone to identify the connectivity dynamics, and
observed that cellular connectivity varies significantly with
altitude, even for the same path. Evaluation results show that
ASCEND can effectively adapt to dynamics in the air, resulting
in a 17.87%~23.1% increase in expected throughput and a
reduction in flight legs with low signal quality. ASCEND
is light-weight, and gradually learns while performing its
missions through reinforcement learning. We leave it as future
work to evaluate the potential of this approach with degree-
of-freedom other than altitude, and to assess its performance
using real-time video streaming applications for surveillance.
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