
Computer Networks 235 (2023) 109983

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Reinforcement learning based routing for time-aware shaper scheduling in
time-sensitive networks✩

Junhong Min a, Yongjun Kim a, Moonbeom Kim a, Jeongyeup Paek a,∗, Ramesh Govindan b

a Department of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea
b Department of Computer Science, University of Southern California Los Angeles, CA, USA

A R T I C L E I N F O

Keywords:
Time-Aware Shaper (TAS)
Time-Sensitive Network (TSN)
Reinforcement learning
Routing
Scheduling
Network simulation
Network performance evaluation

A B S T R A C T

To guarantee real-time performance and quality-of-service (QoS) of time-critical industrial systems, time-aware
shaper (TAS) in time-sensitive networking (TSN) controls frame transmission times in a bridged network
using a scheduled gate control mechanism. However, most TAS scheduling methods generate schedules
based on pre-configured routes without exploring alternatives for better schedulability, and methods that
jointly consider routing and scheduling require enormous runtime and computing resources. To address
this problem, we propose a TSN Scheduler with Reinforcement Learning-based Routing (TSLR) that identifies
improved load balanced routes for higher schedulability with acceptable complexity using distributional
reinforcement learning. We evaluate TSLR through TSN simulations and compare it against state-of-the-art
algorithms to demonstrate that TSLR effectively improves TAS schedulability and link utilization in TSN with
lower complexity. Specifically, TSLR shows a more than 66% increase in schedulability compared to the other
algorithms, and TSLR’s scheduling time is reduced by more than 1 h. It also shows flows’ transmission latency
is less than 25% of their latency deadline requirement and reduces maximum link utilization by approximately
50%.
1. Introduction

Time-Sensitive Networking (TSN) [1,2] represents a general-purpose
real-time Ethernet standard1 that aims to solve not only the real-time
requirements but also the compatibility issues of many proprietary
Ethernet extensions such as EtherCAT, PROFINET, and SERCOS III. Its
goal is to provide a standards-based deterministic ultra-low latency,
ultra-low jitter, and zero-congestion loss data communication in an
integrated network that supports both time-sensitive and best-effort
traffic simultaneously. TSN yields a next-generation local area network
(LAN) technology for the coexistence of information technology (IT)
and operation technology (OT), especially for industrial automation,
in-vehicle, and avionic networks.

TSN consists of several standards to ensure the stringent timing
requirements of real-time systems. Particularly, the IEEE 802.1Qbv [3]
serves as one of the TSN’s core standard amendments defining the time-
aware shaping (TAS) mechanism, which aims to schedule precise frame

✩ This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1008840),
also by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP2023-RS-2022-00156353)
supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation), and also by the Chung-Ang University Graduate Research
Scholarship in 2021.
∗ Corresponding author.

E-mail addresses: dmc93@cau.ac.kr (J. Min), healu1423@cau.ac.kr (Y. Kim), mbkim@cau.ac.kr (M. Kim), jpaek@cau.ac.kr (J. Paek), ramesh@usc.edu
(R. Govindan).

1 To be precise, TSN does consider (and partially support) other layer-2 technologies [28], but the main focus is still on Ethernet.

transmission timing in bridged networks. TAS guarantees deterministic
latency for time-sensitive traffic flows by controlling the transmission
gates of egress queues within switches according to computed schedules
(Fig. 1). However, calculating correct and coordinated TAS schedules
for a network poses a challenging problem and requires substantial
computation because it must account for various factors such as traffic
configuration, flow requirements, paths, link capacity, and utilization
[4,5]. Optimal TAS scheduling is known to be an NP-complete problem
[6,7].

Problem. Prior works have proposed constraints and methods for TAS
scheduling (related works in Section 2). Many of these works focus on
scheduling based on the assumption that the routes of the input flow
are known in advance [8–14]; they do not explore the dependency
between routes and schedules. Nevertheless, if a flow passes through
a path, that affects the schedule of other flows on that path. A set of
vailable online 18 August 2023
389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2023.109983
Received 30 March 2023; Received in revised form 23 July 2023; Accepted 12 Aug
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ust 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:dmc93@cau.ac.kr
mailto:healu1423@cau.ac.kr
mailto:mbkim@cau.ac.kr
mailto:jpaek@cau.ac.kr
mailto:ramesh@usc.edu
https://doi.org/10.1016/j.comnet.2023.109983
https://doi.org/10.1016/j.comnet.2023.109983
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109983&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Networks 235 (2023) 109983J. Min et al.
Fig. 1. Illustration of IEEE 802.1Qbv time-aware shaper (TAS) and gate control list
(GCL).

flows may not offer a valid schedule on a given topology according to
the route configuration. For this reason, there may be an opportunity
to improve schedulability if alternate routes can be explored, which
are attempted in [15–20]. However, searching through all possible
routes for each flow within a large network topology and then creating
and comparing multiple schedules to identify the optimal presents
intractable complexity and requires enormous runtime and computing
resources resulting in low schedulability.

Motivation: Motivated by the complexity issues, we propose a novel
TSN scheduler with reinforcement learning-based routing (TSLR). For im-
proved TAS schedulability, we tackle routing and scheduling as one
problem; however, a brute-force try-all strategy cannot be scalable. As
demonstrated in Section 5, the state-of-the-art routing and TAS schedul-
ing algorithms in TSN literature fail to complete within a reasonable
amount of time when the network and/or flow set size grows. To
this end, we design TSLR based on the Categorical Deep Q-Network (C-
DQN) [21] reinforcement learning algorithm. Our intuition is that the
intelligent policies of reinforcement learning could help solve complex
problems despite of partial explorations.

Approach: TSLR consists of two main components; distributional re-
inforcement learning-based load-balanced routing (DRR) and path step
scheduling (PSS) algorithms. PSS creates TAS schedules efficiently on
a per-link basis considering flow interval, deadline, link bandwidth,
and path length. However, PSS may fail if the link utilization or flow
deadline requirements cannot be satisfied. Furthermore, if the paths
of flows are fixed, whether a valid set of schedules exist for all flows
(i.e., schedulability) becomes deterministic. Thus, DRR dynamically
explores alternate routes that can be scheduled for an identical set
of flows. While doing so, DRR considers two factors; the first is the
number of flows scheduled successfully while satisfying the deadline
requirements, a TSLR’s primary objective. TSLR attempts to schedule
as many flows as possible on the given topology by altering the routes.
The second is load balancing. TSLR favors minimizing maximum link
utilization to provide ample room for other flows (including non-time-
critical best-effort traffic) and utilize network resources efficiently.
To the best of our knowledge, there is no prior work that has used
distributional reinforcement learning to generate load-balanced routing
for improved TAS schedulability.

Contributions: This work’s contributions are as follows;

• We propose TSLR that identifies improved load-balanced routes
for higher schedulability by exploring alternatives.

• This is achieved with feasible complexity by applying reinforce-
ment learning to routing and TAS scheduling for TSN.
2

• We evaluate TSLR through TSN simulations to exhibit improved
schedulability and link utilization of TAS compared to several
state-of-the-art algorithms in the literature.

The remainder of this paper is structured as follows. In Section 2,
we first summarize related literature. Then, we introduce TAS and
reinforcement learning, and justify the selection of C-DQN for our work
in Section 3. We present the TSLR design in Section 4, and evaluate
TSLR in Section 5. We summarize the work and conclude in Section 6.

2. Related work

Several prior studies have attempted to solve the problem of optimal
or efficient TAS scheduling in TSN. Craciunas et al. [8] propose formal
scheduling constraints for calculating valid GCL considering the influ-
encing factors of real-time communication and computing schedules by
applying satisfiability modulo theory (SMT). Dobrin et al. [9] propose
a fault tolerance scheduling scheme that ensures the deadlines of time-
sensitive traffic considering transmission failures and retransmissions.
Jin et al. [10] employ SMT and optimization modulo theory (OMT)
to schedule more real-time flows and reduce execution time. Ansah
et al. [11] propose a schedulability analysis algorithm that verifies
whether schedules of periodic TSN applications and bridges can be
computed. Durr et al. [12] propose a heuristic scheduling algorithm
based on the Tabu search and a compression algorithm to reduce band-
width wastage by guard bands. Kai et al. [22] propose TSN Chained
Flow Scheduling (TCFS) as an efficient scheduling mechanism in a
multi-level topology. Their ILP-based approach is designed to resolve
offline scheduling problems (typical TAS scheduling cases), and Tabu
search based approach is designed to solve online scheduling problems.
However, these works limit the search space by assuming fixed and
given routes with simplified constraints without considering alternative
routes for improved schedulability.

Some studies have considered routing jointly with scheduling in
order to improve schedulability. Nayak et al. [23] propose a time-
sensitive software-defined network (TSSDN) that exploits the logically
centralized paradigm of SDN to provide ILP formulations for solv-
ing the combined problem of routing and scheduling time-triggered
traffic. Subsequently, the authors improve performance by propos-
ing an ILP-based incremental scheduling algorithm that dynamically
adds schedules whenever new flows occur [15]. Similarly, two recent
works [24,25] propose methods for dynamic (online) re-configuration
of TAS scheduling and routing. However, our work aims to solve the
offline scheduling and routing problem in TAS.

Schweissguth et al. [16] propose an ILP-based joint routing and
scheduling method that formularizes network structure, routing,
scheduling, and application requirements. Smirnov et al. [17] propose
an approach that generates a valid route and schedule using a set
of pseudo-boolean constraints for automated optimization of mixed-
criticality networks with time-triggered traffic. Xu et al. [18] utilize
SMT and OMT to solve the co-design constraint set of scheduling and
routing in TSN. Alnajim et al. [19] propose a QoS-aware path selection
and scheduling algorithm that calculates the route and schedule incre-
mentally to minimize queueing delay and preserve QoS. Hellmanns
et al. [20] propose an ILP-based routing and scheduling method,
improving its performance through various optimization techniques.
However, these works only handle simple constraints (simplification of
requirements such as deadline, network load, topology, etc.), suffering
scaling issues for more complex problems with a larger number of
flows.

Most recently, there have been attempts to adopt reinforcement
learning for TSN. Yang et al. [26] propose a Graph Convolutional
Network-based routing and TAS scheduling scheme, and Yu et al. [27]
propose a branching dueling Q-network-based scheme. However, they
have not evaluated their proposals against ILP- or metaheuristic-based

approaches, which are widely adopted in TSN. Furthermore, their



Computer Networks 235 (2023) 109983J. Min et al.

W
w
t
e
c
i
t

l

𝑄

𝛽
a
r
o
i
(
r

D
i
W
b
w
b
T
w
e

𝐿

T
p
s

C
w
f
b
s

Table 1
Summary of related works.

Related works Main difference from our work

[8–10,12,22] Does not consider routing optimization.
[15,24,25] Focus on online scheduling.
[16–20,23] Does not use reinforcement learning.
[26,27] Does not use distributional reinforcement learning.

evaluations are conducted with very simple network requirements. For
example, all flows have the same and loose transmission interval [26],
such as 5 ms, or only small network topologies under ten nodes are
considered [27]. More importantly, none of these works have investi-
gated applying distributional reinforcement learning to increase TAS
schedulability.

Table 1 summarizes the list of most relevant prior works and their
key differences from our work.

3. Background

We begin with an initial overview of TSN’s time-aware shaper mech-
anism and reinforcement learning.

3.1. IEEE 802.1Qbv Time-Aware Shaping (TAS)

One of TSN’s goals includes supporting a variety of traffic types
in a converged network. These are generally classified into scheduled
time-critical (ST), semi time-sensitive audio-video bridging (AVB), and
best-effort (BE) traffic based on their requirements. An ST flow is a
periodic flow that requires deterministic ultra-low latency (with hard
deadlines) and low jitter without congestion loss. To guarantee these
requirements, TAS in TSN isolates those flows’ transmission times
from other traffic types using a gating mechanism, which schedules
the transmission gates of egress queues within each switch based on
advanced knowledge of flow information.

Fig. 1 illustrates an example of TAS operation in a TSN switch.
A switch can have up to eight queues in each egress port, and each
queue corresponds to a traffic class determined from the priority code
point (PCP) in the VLAN identifier according to the IEEE 802.1Q
mapping [28]. Each queue may have an individual transmission selec-
tion algorithm (e.g., credit-based shaper (CBS) [29], asynchronous traffic
shaper (ATS) [30], or a simple FIFO) that can throttle the transmissions
based on some stream reservation criteria [31] (or lack thereof). Addi-
tionally, each queue presents a transmission gate that has two states,
open or closed. Frames in a queue can be transmitted only through an
open gate. When multiple gates are open simultaneously (e.g., at time
𝑇1 in Fig. 1), the transmission selection part selects and transmits frames
in descending order of traffic class among those open queues according
to the strict-priority rule [14].

The gates are controlled by the gate control list (GCL). To compute
this GCL, TAS first allocates ST time windows that can accommodate
the transmission times of time-critical flows that need to be transmitted
at the given interval. Furthermore, to prevent delaying ST frames due
to non-ST frames, TAS allocates a guard band (GB) that closes all gates
before every ST window, as expressed at the bottom of Fig. 1. Finally,
all remaining times except for the ST and GB windows are assigned as
the non-scheduled traffic (NST) windows for transmission of all other
traffic types such as AVB and BE.

3.2. Reinforcement Learning (RL)

RL aims to learn an agent’s optimized behavior by taking actions to
maximize reward in a specific environment.

Q-learning [32] represents an RL algorithm that uses Markov Decision
Process (MDP) as a probability model (Fig. 2). In our work, input traffic
3

flows become the agent in the MDP, and the current network state is
Fig. 2. Reinforcement learning Markov decision process.

the environment. In Q-learning, the agent learns the optimal policy by
predicting an action’s future reward value (Q-value) for a specific state
in MDP. A Q-function that generates Q-value is expressed as:

𝑄𝜋 (𝑠𝑡,𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ |𝑠𝑡, 𝑎𝑡]. (1)

hen 𝑄𝜋 has a policy 𝜋, it returns the sum of expected rewards 𝐸,
hich can be obtained by action 𝑎𝑡 in state 𝑠𝑡. 𝑅𝑡+𝑛 is the reward value

hat can be obtained in 𝑛 time units, and 𝛾 is the discount rate that
xpresses how important the reward of the currently selected action is
ompared to a future reward. 𝛾 possesses a value between 0 and 1 and
s designed such that the distant future reward yields a less effect than
he present reward.

Initially, Q-function is initialized to an arbitrary value, and then
earns using the following formula;

𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) = (1 − 𝛽)𝑄(𝑠𝑡,𝑎𝑡) + 𝛽(𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)) (2)

represents the learning rate which makes the change in 𝑄 faster as it
pproaches 1. 𝑄(𝑠𝑡,𝑎𝑡) is the current Q-value, 𝑟𝑡 is the current action’s
eward value, and 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the maximum Q-value that can be
btained in the next state. Based on these, the new Q-value 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡)
s updated. An iteration ends when the state reaches the terminal state
depending on the model’s definition, it may not exist) or the process
uns for a predefined number of iterations.

eep Q-Network (DQN) [33]: Q-learning presented successful results
n various domains but only for those with low-dimensional states.

hen actions and states are combined, many real-world problems
ecome high-dimensional, and the massive data scale makes processing
ith Q-learning difficult. DQN solves the Q-learning data scale problem
y learning to approximate Q-values through artificial neural networks.
he DQN’s model is expressed as 𝑄(𝑠, 𝑎; 𝜃), where 𝜃 represents the
eights to be trained in the neural network and the cost function is
xpressed as,

𝑜𝑠𝑠 = [𝑄(𝑠, 𝑎; 𝜃) − (𝑟(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎))]2 (3)

he squared difference between the predicted Q-value and the sum of
resent and future rewards equates to cost, and then learning proceeds
uch that the cost converges to zero.

ategorical Deep Q-Network (C-DQN) [21] is the RL algorithm that
e adopt for TSLR. Admittedly, there are many other RL algorithms

rom which we could choose. However, our intuition is that C-DQN is
etter suited for TSLR in solving the load-balanced routing and TAS
cheduling problem of TSN due to the following reasons;

• C-DQN, while similar to a DQN, utilizes the Bellman equation to
learn approximate value distributions.
DQN’s prediction as a single scalar value for a particular state
of a complex environment with partial observations does not
adequately reflect the variations in real systems.
Therefore, expressing the reward as a distribution as in C-DQN

could help to predict the future reward more accurately.



Computer Networks 235 (2023) 109983J. Min et al.
Fig. 3. Example for describing TSLR.

Fig. 4. Example state when flow 𝐹2 attempts routing on switch 𝑠𝑤3.

• TSLR’s action space can be expressed easily as discrete since in
involves selecting a switch.
Therefore, we require a DQN algorithm that performs efficiently
in a discrete action space and is less sensitive to model fine-tuning
than other methods with an Actor–Critic manner.

• C-DQN’s distributional characteristic allows for more flexibil-
ity in making assumptions and stronger inferences into learning
problems.
For this reason, C-DQN allows TSLR to adapt easily to and perform
better in a variety of environments (topologies and flow sets)
without fine-tuning model hyperparameters.

• C-DQN offers superior performance in environments with a dis-
tribution of bimodal or multimodal values [34].
Since there may be multiple routing results for proper scheduling
and load balancing, this feature aligns well with our problem.

• C-DQN reveals better performance than other DQN-based algo-
rithms such as Double DQN, or Dueling DQN [33].

Therefore, we adopt C-DQN in the design of TSLR, and C51 Al-
gorithm [21] provides an implementation of C-DQN in TensorFlow’s
TF-Agents [34] for our work.

4. Design

This section presents the TSLR design, which consists of DRR and
PSSalgorithms.

4.1. DRR — Distributional RL-based Routing

TSLR’s goal is to discover a routing path set that satisfies the
deadlines for all flows. While doing so, DRR balances the load on
links to the extent possible to improve the network’s effective capacity.
Therefore, the objective function is as follows:

max
𝑇
∑

𝑡=1
(𝑆𝐶𝐻(𝑡) + 𝐿(𝑡) + 𝑃 (𝑡)) (4)

𝑆𝐶𝐻(𝑡) is the schedule score function to confirm how well a route set
(when scheduled upon) satisfies the flow deadlines, 𝐿(𝑡) is the load
balancing score function, and 𝑃 (𝑡) is the punishment function for invalid
actions. 𝑡 is the episode’s time-step. The end-to-end routing of one flow
is considered one episode. For each flow, three functions are combined
as in Eq. (4) to consider all rewards related to scheduling, load bal-
ancing, and punishment. DRR obtains the reward value according to
4

the sum of three functions when one episode has ended. However, to
validate whether flows meet their deadlines and calculate the generated
routes’ reward, scheduling must be preceded for each route set. For this
purpose, TSLR executes its scheduling algorithm PSS (Section 4.2).

DRR addresses the complexity problem using RL. The main chal-
lenge is to define the state, action, and reward/penalty of RL that
achieves our goal.

STATE: The state matrix 𝑠(𝑡) of DRR is composed of three column
vectors and a matrix as,

𝑠(𝑡) = {𝑓𝑝𝑎𝑡ℎ(𝑡), 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑡), 𝑓𝑠𝑖𝑧𝑒(𝑡), 𝑠𝑖(𝑡)} (5)

where each row corresponds to a link. Fig. 4 provides an example state
when flow 𝐹2 tries to route from 𝑠𝑤4 in Fig. 3. In this example scenario,
the assumed frame size of each flow is 125 bytes and the link bandwidth
is 100 Mbps.

𝑓𝑝𝑎𝑡ℎ(𝑡) is a vector that represents the location, destination, and cur-
rent flow’s path until 𝑡. 𝑓𝑝𝑎𝑡ℎ(𝑡) distinguishes links into three cases. First
are the links that can be reached from the current switch, including
those that directly connect toward the flow’s destination. If the 𝐹2’s
current location in Fig. 3 is 𝑠𝑤4, it can move to 𝑠𝑤2. In this case, as
exemplified in Fig. 4, a relatively large value (e.g., 100002) represents
the reachable links and clearly emphasizes the sender and receiver at
𝑡. Second are the links toward the switches that are already visited
by the flow, assigned a value of 0 to prevent further consideration.
Finally, the rest are initialized to 𝑓𝑠𝑖𝑧𝑒(𝑡) of the corresponding link to
illuminate the minimum potential free capacity on the link. We observe
that the learning instability due to deviations from these values can
be suppressed through a C-DQN’s distributional learning strategy with
mini-batch learning.

𝑓𝑠𝑖𝑧𝑒(𝑡) depicts the packet size (per transmission) of the current
flow to be scheduled, represented as the transmission time required for
one packet to be scheduled within 𝑇𝑐𝑦𝑐𝑙𝑒3 on each link. 𝑓𝑠𝑖𝑧𝑒(𝑡) is set
to ⌈‘𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛’ ÷ ‘𝑙𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ’⌉. This conversion
represents 𝑓𝑠𝑖𝑧𝑒(𝑡) with time units equal to that of schedule information
𝑠𝑖(𝑡). 𝑓𝑠𝑖𝑧𝑒(𝑡) must be expressed explicitly on every row because the
bandwidth of each link may differ (e.g., 100 Mbps, 1 Gbps, etc.).

𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑡) embeds the current flow’s tx interval (period) given by the
ratio of 𝑇𝑐𝑦𝑐𝑙𝑒 to flow interval in all rows.

𝑠𝑖(𝑡) matrix represents the current scheduling information of all
network links. To reduce the state matrix’s size for faster runtime,
scheduling information 𝑠𝑖(𝑡) is expressed using ‘𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝛿’ columns with
an adaptive compression value 𝛿 for reducing 𝑠𝑖(𝑡) as follows:

𝑠𝑖(𝑡)𝑖𝑗 = 𝛿 −
𝛽𝑗
∑

𝑘=𝛼𝑗

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑡(𝑖,𝑘)

𝛼𝑗 = 𝛿 ⋅ 𝑗, 𝛽𝑗 = 𝛿 ⋅ (𝑗 + 1) − 1

0 ≤ 𝑖 < 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠, 0 ≤ 𝑗 < 𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝛿

(6)

𝑖 and 𝑗 represent the row (link) and the column (time), respectively.
Therefore, 𝛼𝑗 and 𝛽𝑗 mean the beginning and end of the time range
assigned to column 𝑗. All columns of 𝑠𝑖(𝑡) are initialized to 𝛿, the size
of their allocated time range. 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑡(𝑖,𝑘) indicates in binary that link
𝑖 is scheduled at time 𝑘. For example, if link 𝐴 is reserved at 0 μs,
𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑡(𝐴,0) equals, 1 but otherwise 0. Therefore, as the reservation
progresses, 𝑠𝑖(𝑡)𝑖𝑗 decreases from 𝛿 to 0.

A larger 𝛿 makes smaller 𝑠𝑖(𝑡) matrix size, seeking faster learning.
However, the more the 𝑠𝑖(𝑡) size is compressed by 𝛿, the more abstract
scheduling information becomes. Therefore, by adjusting the 𝛿 accord-
ing to the environment in which DRRis to be run, it is possible to control

2 This can be any value that is sufficiently greater than 𝑓𝑠𝑖𝑧𝑒(𝑡).
3 In TAS, gates are scheduled within a cycle time, 𝑇𝑐𝑦𝑐𝑙𝑒 and the GCL schedule

is repeated every 𝑇𝑐𝑦𝑐𝑙𝑒. 𝑇𝑐𝑦𝑐𝑙𝑒 should be set as the least common multiple (LCM)
of the flow intervals passing through the switch (more details in Section 4.2).



Computer Networks 235 (2023) 109983J. Min et al.

l
r
𝑁
r
r
o
i

t
s
r
b

the trade-off between accuracy and latency; i.e., accurate expression
of scheduling information versus faster DRR operation. For example, if
DRR runs in a high-performance GPU environment, 𝛿 could be set to 1
to reflect accurate scheduling information; otherwise, 𝛿 could exceed 1
to reduce the execution time.

In our scheme, we assume that each end system is integrated with
a switch (‘talker’ and ‘listener’ in TSN terminology). If end systems
and switches are separated, the state matrix 𝑠(𝑡)’s row should contain
additional links connected to the end systems. However, if an end
system connects only to one switch, then that link can be excluded
safely from 𝑠(𝑡) to reduce size and complexity. Therefore, in this case,
the sources of flows from end systems are replaced by a directly
connected switch.

ACTION: An action 𝑎(𝑡) is to choose a switch to visit next for routing.
Therefore, if switches are indexed as an integer starting from 0, the
range of 𝑎(𝑡) that the agent can take is between 0 and ‘number of switches
— 1’. However, selecting a switch not directly connected to the current
location would be an invalid action. Therefore, DRR avoids this by
removing those actions from the action space; i.e., an action space
is defined by links toward each neighbor of the current location. As
exemplified in Figs. 3 and 4, if flow 𝐹2 tries to route from 𝑠𝑤3, a valid
action to take is either a link to 𝑠𝑤1 or to 𝑠𝑤4.

There are also other invalid actions that cannot be known in advance
before routing or scheduling and thus must be handled by giving a
penalty in the reward. Selecting a switch that generates a routing
loop is an invalid action. Also, an action that forces link utilization
to exceed 100% of its link bandwidth is an obviously invalid action.
Finally, to achieve global load balancing, DRR compares the maximum
link utilization of the current path set to that of previously scheduled
sets.4 Subsequently, an action that increases the max link utilization is
defined as an invalid action. These invalid actions will be punished with
a penalty in the reward.

REWARD: The reward function 𝑟(𝑡) is composed of,

𝑟(𝑡) =

{

𝑆𝐶𝐻(𝑡) + 𝐿(𝑡) 𝑖𝑓 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛
𝑃 (𝑡) = 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑖𝑓 𝑎𝑛 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑖𝑜𝑛

(7)

DRR first determines whether an action is valid or invalid and assigns
a reward 𝑟(𝑡) in Eq. (7) accordingly. If an action is invalid, the reward
function 𝑟(𝑡) has a penalty value 𝑃 (𝑡) according to 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 = −𝑁 − 1,
which is smaller than the most negative value that a valid action can
take as a reward. 𝑁 is the number of switches in the topology. The
reason that DRR assumes a value of −𝑁−1 as 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 is that 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡
must be less than the reward for any action. The worst action reward
that can theoretically be received without falling into the penalty state
is the minimum value of 𝑆𝐶𝐻(𝑡)+𝐿(𝑡). 𝑆𝐶𝐻(𝑡) is a reward according to
the schedule score function in Eq. (8), and 𝐿(𝑡) is a reward according to
the load balancing score function in Eq. (9). The minimum of 𝑆𝐶𝐻(𝑡)
is 0 (when the binary value is 0) and the minimum of 𝐿(𝑡) will be
−𝑁 according to Eq. (9). Therefore, 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 must be less than −𝑁 .
However, if the 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 becomes too small, the reward range becomes
too large and the value distribution precision of C-DQN decreases.
Therefore, 𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 possesses the value of −𝑁−1 to narrow the reward
range.

DRR’s primary goal involves creating a routing path set that satisfies
the deadlines of as many flows as possible when scheduled. For this
purpose, 𝑆𝐶𝐻(𝑡) reflects whether the scheduling result complies with
the deadlines of flows; i.e., the more flows comply with the deadline,
the greater the reward;

𝑆𝐶𝐻(𝑡) = 𝑏𝑑𝑠𝑡 ⋅ 𝑏𝑓𝑑𝑙 ⋅ (𝑁 +𝑁 ⋅ (𝐹 ⋅ 𝐹 )𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒(𝑡)−1)

𝑏𝑑𝑠𝑡 ∶ 𝐻𝑎𝑠 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛?

𝑏𝑓𝑑𝑙 ∶ 𝐷𝑜𝑒𝑠 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑖𝑡𝑠 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒?

(8)

4 Only for those that have successfully scheduled all flows.
5

Fig. 5. TSN scheduler with RL-based routing (TSLR).

𝑏𝑑𝑠𝑡 and 𝑏𝑓𝑑𝑙 are binary values that are 1 if each condition is satisfied
and 0 otherwise. 𝑁 is the number of switches in the topology. and
𝐹 is the number of flows. ComplianceRate(t) represents the ratio of
how many flows succeeded in meeting their deadlines among the total
flow set. DRR accepts a routing result when it does not decrease
ComplianceRate(t). 𝑆𝐶𝐻(𝑡) carries value 𝑁 by default to provide a
reward for successful routing of one flow. Also, 𝑆𝐶𝐻(𝑡) awards an
additional reward as a function of the overall scheduling result with
ComplianceRate(t). However, in order for the reward to have a meaning-
ful distribution, its value must be clearly distinguished according to the
scheduling result. The simplest method involves setting an extremely
large change in the reward’s absolute value according to the scheduling
result, but this makes other rewards meaningless. Therefore, DRR takes
𝐹 ⋅𝐹 as the base of the exponential function in the reward equation for
the scheduling result. A higher ComplianceRate(t) produces greater a
change in the reward. Finally, 𝑁 is multiplied to increase the maximum
value according to 𝑁 .

DRR has two policies for load balancing, global and local. The global
load balancing policy employs min–max fairness criteria to achieve
‘‘minimizing the maximum link utilization’’ using the penalty function
for invalid actions. On the other hand, the local load balancing policy
is added as 𝐿(𝑡) under the intuition that avoiding links with higher
utilization is helpful for future scheduling, even in the local scope. Note
that if 𝐿(𝑡) is made positive, the reward may increase as the path length
increases, which may incorrectly encourage DRR to select unnecessarily
longer paths. To prevent this, 𝐿(𝑡) is always a negative value as follows:

𝐿(𝑡) = −𝑁 ⋅ 1024𝐿𝑖𝑛𝑘𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑡)−1 (9)

𝐿𝑖𝑛𝑘𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑡) refers to the link utilization of the current link. When
ink utilization increases to 10% (0.1), the agent receives a worse
eward by a factor of two (10240.1 = 2). The reason for multiplying by

is related to the reward’s range. According to Eq. (7) and Eq. (8), the
ange of rewards increases as 𝑁 increases. However, if 𝐿(𝑡) has a fixed
ange, it will hardly affect the overall reward value. Thus its influence
n the value distribution can disappear. Therefore, 𝑁 is multiplied to
ncrease 𝐿(𝑇 )’s influence on a reward function.

Fig. 5 illustrates an overview of TSLR. When a flow list on a network
opology is given as the input, and their paths are initialized to the
hortest paths, DRR iteratively finds alternate routes for each flow and
eplaces them according to its policy. DRR learns for a certain period
y evaluating alternate routes’ rewards in terms of TAS scheduling



Computer Networks 235 (2023) 109983J. Min et al.
Algorithm 1 Path Step Scheduling (PSS)
Input: flowList including the routing paths generated by the DRR, and 𝑇cycle

1: scheduleSet ← {}
2: 𝑇𝑐𝑦𝑐𝑙𝑒 ← get𝑇cycle(flowList)
3: maxLength ← maxPathLength(flowList)
4: flowsGroups ← groupedByInterval(flowList)
5: sortedGroups ← sortedByInterval(flowsGroups)
6: for group in sortedGroups do
7: itrNum ← INT(𝑇𝑐𝑦𝑐𝑙𝑒÷ group.interval)
8: for itr in range(itrNum) do
9: for step in range(maxLength) do

10: curFlows ← {}
11: for flow in group do
12: if step ≤ flow.pathLength then
13: link ← getLink(flow, step)
14: push(curFlows[link], flow)
15: end if
16: end for
17: for link in curFlows do
18: flows ← sortedByDeadline(curFlows, link, itr)
19: for f in flows do
20: slots ← getTimeSlots(scheduleSet, link)
21: scheduleSet ← setSchedule(f, slots, scheduleSet, link, itr)
22: end for
23: end for
24: end for
25: end for
26: end for

success rate and load balancing according to Eq. (7). DRR training
and evaluation repeat continuously, and the actual routes are reflected
gradually during this process. Because the problem’s form could vary
significantly according to the network topology or flow set, DRR trains
without a pre-trained neural network in other networking scenarios.

4.2. PSS — Path Step Scheduling

The PSS algorithm receives the routing result generated by DRRas
an input and generates the network’s schedule. Algorithm 1 is the
pseudo-code of PSS. We use the example scenario in Fig. 3 to describe
PSS operation and assume that flow 𝐹0 has a 500 μs interval and 𝐹1
and 𝐹2 have 250 μs intervals. The flow deadlines of flows match their
interval.

Initialization (Line 1–5): scheduleSet initializes as a set of schedule
lists (i.e., GCLs repeated with 𝑇𝑐𝑦𝑐𝑙𝑒) for each switch in the network.
𝑇𝑐𝑦𝑐𝑙𝑒 is calculated as the least common multiple of the intervals of
flows in flowList, and maxLength is set as the maximum path length
(hop-count) of all flows. Finally, the flows with the same interval are
grouped together, and these groups are sorted in ascending order of the
intervals. For the example in Fig. 3, initialization occurs as follows:

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑒𝑡 = {}, 𝑇𝑐𝑦𝑐𝑙𝑒 = 500 μs, 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ = 2,

𝑠𝑜𝑟𝑡𝑒𝑑𝐺𝑟𝑜𝑢𝑝𝑠 = {[𝐹1, 𝐹2], [𝐹0]}
(10)

Line 6∼8: Scheduling is performed in group order by smaller intervals,
proceeding as many times as the number of transmissions (itrNUM)
within one 𝑇𝑐𝑦𝑐𝑙𝑒 (𝑖th itr). For example, if 𝑇𝑐𝑦𝑐𝑙𝑒 is 500 μs and a
flow’s interval is 250 μs, that flow will transmit twice within 𝑇𝑐𝑦𝑐𝑙𝑒
(reve.g., itrNUM = 2 in line 8). Furthermore, not all flow transmissions
are scheduled at once, but 𝑖th transmissions of the same flow group are
scheduled in a batch. Therefore, in the example of Fig. 3, the scheduling
proceeds in the order of (1) the first transmissions of 𝐹1 and 𝐹2, (2) their
second transmission, and (3) the transmission of 𝐹0.

The reason for scheduling flows with smaller intervals first is that
their constraints (deadlines) are tighter, and when multiple transmis-
sions are performed within 𝑇 , 𝑖th transmissions are affected by the
6

𝑐𝑦𝑐𝑙𝑒
Fig. 6. Difference in order of scheduling transmissions.

time occupied by previous transmissions. Furthermore, the reason not
to schedule all transmissions of one flow simultaneously is to ensure
fairness to other flows. For example, consider Fig. 6(a), where 𝑇𝑐𝑦𝑐𝑙𝑒 is
500 μs, and the intervals and deadlines of flows 𝐹𝑘−1, 𝐹𝑘, and groups
of flows 𝐹𝐴 and 𝐹𝐵 are all 250 μs. When flow 𝐹𝑘 utilizes links in the
order of 1-2-3, flow 𝐹𝑘 is unable to comply with the deadline (i.e., 𝐹 1

𝑘 is
not delivered within 250 μs) due to the second transmission of 𝐹𝐵 (𝐹 2

𝐵).
This shows that scheduling all interval transmissions of one flow at once
imposes a bigger constraint on the next flow scheduling. Therefore,
PSS schedules all 𝑖th interval transmissions within the same flow group
first and then schedules (𝑖+1)th interval transmissions. This method, for
example, enables flow 𝐹𝑘 to comply with its deadline by scheduling 𝐹 1

𝑘
earlier than 𝐹 2

𝐵 on link 3, as shown in Fig. 6(b).

Line 9: As the name suggests, PSS schedules step-by-step, where a step
indicates a path hop. After scheduling the first hop of all flows in one
iteration, scheduling the second hop for each flow occurs. In Fig. 3,
{𝐹1 ∶ 0 → 1} and {𝐹2 ∶ 3 → 4} are scheduled first, and then the
scheduling of {𝐹1 ∶ 1 → 2} and {𝐹2 ∶ 4 → 2} follows.

Line 10∼17: This part confirms which flow should be scheduled on
which link in the current step. The algorithm identifies the 𝑚th-step
(𝑚th hop) link of the flow path and stores the flow that should be
reserved in the corresponding link. When this process is completed, the
flow-link lists that need to be scheduled at the current step are stored
in curFlows.

Line 18∼22: PSS reads the list of flows and links that should be
scheduled and performs actual scheduling. The list of flows is sorted
in ascending order of the remaining deadline per remaining hop so
that a flow with an imminent deadline is scheduled first. Then, get-
TimeSlots verifies the free space (called timeslot) within 𝑇𝑐𝑦𝑐𝑙𝑒 that can
be scheduled on the current link. In setSchedule, a flow is scheduled
in a suitable timeslot with a consideration of its constraint. If there
are multiple timeslots, the algorithm confirms whether sufficient space
exists to be scheduled and to satisfy the flow’s constraints sequentially
from the front. In case of that there is a favorable determination, the
scheduler selects the corresponding timeslot. Otherwise, the scheduler
checks the next timeslot, and if there are no available timeslots, it stops
scheduling.

getTimeSlots() in line 21: In most TAS scheduling, a timeslot can
have a maximum length of 𝑇𝑐𝑦𝑐𝑙𝑒, as shown in Fig. 7. In general, a
timeslot having a length of 𝑇𝑐𝑦𝑐𝑙𝑒 is divided into several sub-timeslots
in advance, and then a schedule is assigned to these sub-timeslots, or
timeslots are split into two by dividing the original timeslot centered at
the scheduled part. In both approaches, it is assumed that a GCL sched-
ule cannot extend beyond the endpoint of the original timeslot of length

𝑇𝑐𝑦𝑐𝑙𝑒. PSS is similar to the latter approach. However, getTimeSlots() of



Computer Networks 235 (2023) 109983J. Min et al.
Fig. 7. Example of getTimeSlots().

Fig. 8. Orion CEV network topology [35–37].

PSS exploits the fact that the TAS schedule is repeated. For example,
a new timeslot at step-2 in Fig. 7 ends at 𝑇1 beyond 𝑇0, the endpoint
of 𝑇𝑐𝑦𝑐𝑙𝑒. This allows PSS to expand the scheduling space, increasing
schedulability.

Computational complexity of PSS depends mainly on the number of
operations scheduling links. There are additional operations, such as
flow sorting, but they are relatively insignificant. The number of link
scheduling operations 𝑁𝑙𝑖𝑛𝑘 can be expressed as:

𝑁𝑙𝑖𝑛𝑘 =
∑

∀𝑓∈𝐹
𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝𝑎𝑡ℎ) ⋅ (𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (11)

The number of links to be scheduled per-flow depends on the number
of links used in the flow path (𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝𝑎𝑡ℎ)) and how many times
to schedule each link according to the flow’s transmission interval
(𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). Since scheduling must be performed ‘𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ’
times for each link, the number of link scheduling required by one flow
is 𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑝𝑎𝑡ℎ) ⋅ (𝑇𝑐𝑦𝑐𝑙𝑒 ÷ 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). If this is aggregated for all flows
𝑓 in the entire flow set 𝐹 , it is the total number of link scheduling
(𝑁𝑙𝑖𝑛𝑘) performed by PSS. Therefore, PSS has 𝑂(𝑁𝑙𝑖𝑛𝑘) complexity,
which depends on the transmission interval and flow path length.

5. Evaluation

We evaluate TSLR against two state-of-the-art algorithms, Joint
Routing and Scheduling (JRaS) [16] and ILP-Red+Conf+Adv (IRCA) [20],
and also against Simulated Annealing -based dynamic routing with
PSS (SA/PSS) for comparison with a heuristic approach. SA/PSS is a
metaheuristic algorithm that finds a better solution by changing the
current route to other routes from the entire set while applying the
same PSS for scheduling. The main point of comparison with SA/PSS
is whether DRR’s RL-based routing proves effective.

We conduct an extensive set of simulations using multiple differ-
ent network topologies to evaluate TSLR’s scalability. We compare
the scheduling time, schedulability, scheduled flow latency and jitter,
maximum link utilization, and path length distribution.
7

Table 2
Random topology specifications for the simulation.

Topology Number of switches Number of links Number of flows

T10 10 20 100
T20 20 40 200
T30 30 60 300
T40 40 80 400
T50 50 100 500

Table 3
Traffic specifications for the simulation.

Traffic name Traffic size TX interval Latency/deadline 𝑁 flows

ST-1 128 bytes 600 μs 100 μs 𝑁∕5
ST-2 96 bytes 400 μs 100 μs 𝑁∕5
ST-3 96 bytes 300 μs 100 μs 𝑁∕5
ST-4 64 bytes 200 μs 100 μs 𝑁∕5
ST-5 64 bytes 100 μs 100 μs 𝑁∕5

5.1. Simulation setup

We implement TSLR on Tensorflow’s Agents [34], JRaS and IRCA5

on Gurobi(v9.5),6 and SA/PSS on Python(v3.9).7 Simulations are con-
ducted on a workstation with an Intel Core i7-10700F, 32 GB RAM,
96 GB virtual RAM(SSD), and no GPU.

We use ten different network topologies for evaluation. The first
is NASA’s Orion Crew Exploration Vehicle (CEV) network topology
in Fig. 8 [35–37] which consists of 15 switches. The five topologies in
Fig. 9 are randomly generated according to the specifications in Table 2
to reveal that our scheme can generalize to non-specific topologies.
For these random topologies, we use 2𝑛 links for 𝑛 nodes. This is
a popular approach to support two-link redundancy using industrial
fault-tolerance protocols such as high-availability seamless redundancy
(HSR) and parallel redundancy protocol (PRP) specified in IEC 62439-3,
or TSN’s frame replication and elimination for reliability (FRER) in IEEE
802.1CB [38]. In addition, to observe the impact of nodes-links ratio
on TSLR, four additional random topologies having the same number
of nodes or that of links with the T30 graph (Fig. 9(c)) as used as in
Fig. 11. All links are full-duplex with 100 Mbps bandwidth, and all
schemes use up to 75% of link bandwidth for scheduling to comply
with the TSN standard.

Five ST flow types are used as described in Table 3, and we vary
the total number of flows from 40 to 200 in the CEV scenario, and
100 to 500 in random topology scenarios; one fifth of the flows are of
each type. For the topologies in Fig. 11, same number of flows as the
T30 scenario (300 flows) is used. We set the flow deadlines to 100 μs
according to industry standards [39,40] and use five different flow
intervals to simulate a complex IIoT scenario. DRR parameter settings
are listed in Table 4. In the case of 𝛿, we adopt 5 as a default value
for the CEV scenarios. However, in random topology scenarios, 𝛿 is
adjusted to reduce the size of TSLR’s state matrix. In T50, 𝛿 is 20, and
in other random topology scenarios, 𝛿 is 10.

5.2. Performance of routing and scheduling

Scheduling time is defined as the earliest time that the schedules for
all flows are created while satisfying the deadline and bandwidth re-
quirements. Scheduling time is very important for TSN since it directly
impacts the network’s schedulability within a given time limit. Since

5 The original IRCA algorithm [20] does not support scheduling heteroge-
neous flows having different transmission intervals, and therefore, we had to
enhance it to support the scheduling of flows with heterogeneous intervals.

6 Gurobi Optimization, https://www.gurobi.com.
7 https://www.python.org/downloads/release/python-390/

https://www.gurobi.com
https://www.python.org/downloads/release/python-390/


Computer Networks 235 (2023) 109983J. Min et al.
Fig. 9. Random network topologies generated based on Table 2.
Fig. 10. Comparison of scheduling time for the four algorithms. (Missing data point
means scheduling failed to complete. Only TSLR succeeds beyond 160 flows or T30
scenario respectively.)

Table 4
Settings of TSLR.

Name Value

Neural network FC (100, 100, 100)
Number of atoms 51
Optimizer Adam
Activation function Leaky ReLU
Learning rate 0.0001
Minibatch size 32
Discount rate 0.999
Loss function Mean Squared Error
Replay buffer size 100000
Max Q value 2⋅(Number of Nodes)
Min Q value –(Number of Nodes)–1
Default 𝛿 5

TSLR is not a pre-trained model, the scheduling time of TSLR includes
both training time and evaluation (testing) time. Note that scheduling
time result exists if and only if the scheduling succeeds. In other words,
there is no scheduling time result if scheduling fails. Thus, scheduling time
result also shows the schedulability.

The scheduling time is influenced not only by the size and bandwidth
of the network topology but also by the number, size, and requirements
of the flows, i.e., traffic load. Fig. 10(a) plots the scheduling time as we
increase the traffic load on the CEV topology. TSLR is the fastest for all
cases, and the execution time of other algorithms increases dramatically
8

as the number of flows increases. For example, in a simulation with s
120 flows, TSLR shows a scheduling time of about 3605 s faster than
JRaS and 2478 s faster than SA/PSS. In addition, JRaS fails to schedule
160 flows and beyond due to an out-of-memory (OOM)8 error, and
IRCA is unable to find a schedule beyond 80 flows. On the other
hand, TSLR schedules about 66% more flows than JRaS and 150%
more flows than IRCA while successfully scheduling 200 flows, showing
significantly improved schedulability.

These results of JRaS and IRCA are worse than what has been
presented in [20] because IRCA is designed for flow sets with the same
intervals. According to these results, the computing resources required
by the ILP-based approaches increase rapidly according to the number
of flows to be scheduled (with multiple transmissions due to interval
and complicated hyper-period), and the chances of finding a solution
drop rapidly. SA/PSS had similar results with the ILP-based approaches
as well. Although OOM does not occur, SA/PSS cannot find solutions
within ten hours in 160 flow cases and beyond. These results illustrate
that the ILP-based methods and the heuristic method of changing
the path from the entire path set are inefficient. TSLR succeeds in
generating schedules for a complex interval flow set in a relatively
short time in all cases, showing significantly improved schedulability
and scheduling time. This confirms the efficacy of an RL-based routing
method like DRR.

Fig. 10(b) plots the scheduling time results for random topologies
as we increase the network size and the number of flows. In order to
maintain a similar proportional traffic load, both the network size and
the number of flows are increased at the same rate as in Table 2. It can
be seen that the increase in network size (which increases the average
path length of flows) and the number of flows have a significant impact
on scheduling complexity and, thus, the scheduling time. Nevertheless,
TSLR still significantly outperforms the ILP-based schemes. JRaS and
IRCA consume substantial time on T10 and returns out-of-memory on
larger scenarios. SA/PSS succeeded in scheduling very quickly in T10
and T20. However, this is because PSS successfully schedules based
on the initial routing result without executing the SA-based routing
algorithm. In the other scenarios, SA/PSS returns OOM. This shows that
even generating a routing set is difficult in a scenario with a relatively
large topology, and that TSLR is more effective in terms of both
schedulability and scheduling time than other approaches for different
topologies and flow sets. TSLR succeeds in routing and scheduling input
flows in various topologies without a pre-trained model because RL-
based routing of DRR can find reasonable routes even when unable to
view the entire routing set.

Finally, to understand the impact of node–link ratio on TSLR, we
used T30 topology as a reference and varied the number of nodes
and links. Specifically, we used a fixed number of nodes from T30
and different number of links, and vice versa, as shown in Fig. 11.
Fig. 12 plots the scheduling result on these topologies. The bar graph
represents the number of flows whose schedules meet their deadline
requirements, and the line graph represents the scheduling time for the
best result within a time limit (10 h, red dotted link). In general, when
the number of links increases or the number of nodes decreases, there

8 We had 128 GB of RAM (32 GB physical + 96 GB virtual) on our
imulation machine.



Computer Networks 235 (2023) 109983J. Min et al.

a
n
i

L
l
w
z
s
r
t
r
N
I
o
l
l
t
t
o
t
H
a
s

Fig. 11. Fixed random network topologies with the fixed number of nodes or links. In each subfigure’s name, the number after 𝑁 means the number of nodes, and the number
after L means the number of links.
e
C
t
I
u
1
t
a
b

(
I
s
f
c

Fig. 12. Scheduling result of TSLR in fixed random graphs. The grey bars mean that
TSLR fails to configure successful TAS schedules in 300 flows.

are abundant links such that shortest path is sufficient for scheduling
without the need for alternative routes search by RL. On the other
hand, when the number of nodes increases or the number of links
decreases, there is an insufficient number of links to fully support
(schedule) the given set of flows. Specifically, in the N40-L60 scenario
(Fig. 11(b)) with 40 nodes and 60 links, only 295 flows were scheduled
successfully within the time limit, and only 270 flows succeeded in the
N30-L40 topology (Fig. 11(d)). This shows that the node–link ratio of
the network greatly affects the scheduling performance given a fixed
number of flows; if there are too many links, alternate routes are not
necessary, and if there are too few links, the number of flows that can
be scheduled must be reduced accordingly.

Overall, the evaluation results show that it is impractical to have
all paths as a search space, but alternate paths should be explored to
increase the schedulability of TAS, and TSLR addresses this problem
ppropriately. TSLR succeeds in routing and TAS scheduling with sig-
ificantly less running time and memory usage than existing methods
n all evaluated scenarios.

atency/Jitter: Fig. 13 plots the latency of ST flows, showing the
atency results when the scheduling time was measured. In other words,
hen the first successful schedule was created. The red dotted hori-

ontal line is the deadline that the flows must satisfy. Since we define
uccessful scheduling as generating a schedule that satisfies the latency
equirements for all time-critical flows, there is no flow that violates
he deadline. Whether such a schedule can be found was already
eflected in the aforementioned scheduling time or schedulability results.
evertheless, TSLR’s overall average latency is similar to JRaS and

RCA and quite lower than SA/PSS. For example, the average latency
f TSLR in all CEV scenarios is below 25 μs, which is 25% of the flow’s
atency requirement. (The reason TSLR and SA/PSS have the same
atency in most smaller scenarios is that PSS successfully scheduled on
he initial routing without needing to explore alternatives.) This implies
hat TSLR effectively generates a schedule considering deadlines. The
ptimization functions of JRaS and IRCA are to reduce latency. In con-
rast, TSLR considers a detour path (maybe longer) for load balancing.
owever, in the T10 scenario, TSLR’s latency is lower than that of JRaS
nd IRCA and markedly lower than that of SA/PSS in the CEV 120 flows
9

cenario. Finally, Tables 5 and 6 show that TSLR maintains acceptable t
Fig. 13. Latency results of flows for simulations of routing and scheduling Missing
results mean scheduling failed.

average jitter, being within 5μs in most scenarios. Although this is not
as good as JRaS and IRCA that achieve zero jitter, their schedulabilities
are poor. The main results is that TSLR is sacrificing a little latency and
acceptable jitter for significantly improved schedulability. Therefore,
we conclude that TSLR is competitive when considering schedulability,
latency, and jitter jointly.

Load balancing and path length (Hops): Fig. 14(a) displays the load
balancing performance of TSLR. Maximum utilization is the utilization
of the bandwidth allocated to TSN. According to Fig. 10(a), TSLR gen-
rates successful schedules in less than an hour on average for all
EV scenarios. However, in this simulation, we fixed the execution
ime of TSLR to one hour to obtain improved load balancing results.
n all scenarios of Fig. 14(a), TSLR achieves the smallest maximum
tilization compared to all other methods. Particularly, in the CEV-
20, the maximum utilization of TSLR is approximately 50% lower than
hat of SA/PSS. This indicates that the flows have been distributed to
lternate links for balanced traffic load, and there is more available
andwidth for other later flows, including best-effort traffic.

Fig. 14(b) plots the empirical cumulative distribution function
eCDF) of flow path lengths for CEV 120 flows scenarios in Fig. 14(a).
RCA is excluded because scheduling failed in the CEV 120 flows
cenario. Since TSLR considers detour routes (from shortest paths)
or load balancing, path length increases are inevitable. However,
ompared to JRaS, the increases are small and insignificant, considering

he benefits gained. Additionally, compared to SA/PSS, the overall



Computer Networks 235 (2023) 109983J. Min et al.
Fig. 14. Maximum link utilization and hop distribution in CEV.

Fig. 15. Scheduling time with static route on CEV topology.

Table 5
Average jitter in CEV scenarios. ‘–’ means no result can be obtained because it failed
to schedule all flows.

Number of flows TSLR JRaS IRCA SA/PSS

40 3.285 μs 0 μs 0 μs 3.285 μs
80 1.829 μs 0 μs 0 μs 1.829 μs
120 4.617 μs 0 μs – 7.890 μs
160 4.894 μs – – –
200 5.601 μs – – –

Table 6
Average jitter in random topology scenarios. ‘–’ means scheduling failed.

Number of flows TSLR JRaS IRCA SA/PSS

40 0.162 μs 0 μs 0 μs 0.162 μs
80 2.334 μs – – 2.334 μs
120 3.520 μs – – –
160 4.656 μs – – –
200 4.907 μs – – –

lengths of the TSLR-generated paths are notably shorter. This means
that TSLR’s negative reward policy for routing effectively suppresses
the increase in path lengths while pursuing the schedulability and load
balancing goals.
10
Table 7
The routing result in CEV 40 scenario.

Flow ID Flow size Flow interval Path

0 128 bytes 600 μs 3 → 7
1 128 bytes 600 μs 8 → 2 → 3
2 128 bytes 600 μs 12 → 9 → 8
3 128 bytes 600 μs 10 → 13
4 128 bytes 600 μs 12 → 9 → 8
5 128 bytes 600 μs 10 → 9 → 8
6 128 bytes 600 μs 2 → 3 → 6
7 128 bytes 600 μs 1 → 9
8 96 bytes 400 μs 6 → 10 → 9 → 12
9 96 bytes 400 μs 13 → 14 → 6 → 5
10 96 bytes 400 μs 4 → 5 → 6 → 3
11 96 bytes 400 μs 7 → 10 → 13
12 96 bytes 400 μs 2 → 7 → 9 → 10
13 96 bytes 400 μs 6 → 10 → 13
14 96 bytes 400 μs 5 → 4 → 3 → 7 → 2 → 12
15 96 bytes 400 μs 14 → 13 → 10 → 9 → 8
16 96 bytes 300 μs 7 → 3 → 6
17 96 bytes 300 μs 1 → 9
18 96 bytes 300 μs 11 → 3 → 4
19 96 bytes 300 μs 10 → 6 → 5
20 96 bytes 300 μs 5 → 6 → 3
21 96 bytes 300 μs 1 → 2
22 96 bytes 300 μs 14 → 6 → 3
23 96 bytes 300 μs 0 → 2 → 1
24 64 bytes 200 μs 11 → 10 → 6 → 14
25 64 bytes 200 μs 9 → 1
26 64 bytes 200 μs 14 → 6 → 3 → 3 → 2 → 7 → 9
27 64 bytes 200 μs 5 → 4 → 3 → 7 → 2 → 12
28 64 bytes 200 μs 11 → 3 → 6
29 64 bytes 200 μs 10 → 9 → 12
30 64 bytes 200 μs 7 → 3 → 6
31 64 bytes 200 μs 13 → 14 → 6 → 10
32 64 bytes 100 μs 14 → 13 → 10 → 7
33 64 bytes 100 μs 3 → 2 → 12
34 64 bytes 100 μs 7 → 10
35 64 bytes 100 μs 1 → 9 → 12
36 64 bytes 100 μs 1 → 2 → 8 → 9
37 64 bytes 100 μs 11 → 10 → 7 → 2 → 0
38 64 bytes 100 μs 9 → 7 → 3
39 64 bytes 100 μs 2 → 3 → 4 → 5

Table 8
Average jitter with static routing in CEV.

Number of flows TSLR JRaS IRCA

40 3.147 μs 0 μs 0 μs
80 1.019 μs 0 μs –
120 3.208 μs 0 μs –
160 4.067 μs 0 μs –
200 5.789 μs – –

5.3. Performance of PSS scheduler with static routing

To understand the performance of the PSS scheduler, we isolate
the scheduling parts of the three schemes and compare them on a
fixed route set generated by DRR, as in Table 7. Fig. 15 plots the
scheduling time of each algorithm on the CEV topology, demonstrating
that PSS completes TAS scheduling in less than 1 s, even for 200 flows.
This is because PSS derives only one result for each input according to
the criteria determined by the greedy algorithm. On the other hand,
scheduling algorithms of JRaS and IRCA take a considerable amount of
time, and out-of-memory errors occur as the number of flows increases.
Due to the characteristic of TSLR, which recognizes a set of TAS
schedules as an environment for RL, a single scheduling execution on
a route set produced by DRR must complete quickly. Thus, it is not
feasible for TSLR to adopt the scheduling algorithms of JRaS or IRCA
for its purpose. Furthermore, despite being a greedy algorithm, PSS has
comparable or even superior flow latencies than the other two on the
same route set, as portrayed in Fig. 16. Jitter results are similar to those
with dynamic routing (See Table 8).



Computer Networks 235 (2023) 109983J. Min et al.

6

t
s
a
w
i

t
T
i
l
a
w
f

C

t
d
J
R

D

c
i
D

h

R

Fig. 16. Latency results of flows with static route in CEV.

. Conclusion

In this paper, we proposed TSLR for TSN. It explores alterna-
tive routes for improved TAS scheduling and addresses the problem’s
complexity using RL. As such, it accounts for both the network load
balancing and the flows’ deadline to select the good scheduling op-
tion depending on the input flow set. We evaluated TSLR on various
opologies with a diverse set of flows and compared it against two
tate-of-the-art algorithms, JRaS and IRCA, and also with one heuristic
lgorithm SA/PSS, to show that the scheduling performance improves
hile achieving ‘min–max fair’ load balancing and negligible increases

n path length.
However, our approach has a couple of limitations. First, when

he network size grows, the learning performance deteriorates. Second,
SLR must be trained each time for each network scenario. We plan to
nvestigate solutions for these challenges in our future work. Nonethe-
ess, we believe that this work provides a reference for studies that
ttempt to graft machine learning to TSN. As our another future work,
e plan to explore multi-path sub-stream routing in IEEE 802.1CB

rame replication and elimination for reliability for robust TSN.

RediT authorship contribution statement

Junhong Min: Methodology, Software, Formal analysis, Valida-
ion. Yongjun Kim: Conceptualization, Software, Writing – original
raft. Moonbeom Kim: Visualization, Data curation, Investigation.
eongyeup Paek: Resources, Supervision, Project administration.
amesh Govindan: Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
ata availability

The authors are unable or have chosen not to specify which data
as been used.

eferences

[28] IEEE Standard for Local and Metropolitan Area Network –Bridges and Bridged
Networks, IEEE Std 802.1Q-2018, 1–1993, IEEE, Piscataway, NJ, 2018, http://dx.
doi.org/10.1109/IEEESTD.2018.8403927, (Revision of IEEE Std 802.1Q-2014).

[1] IEEE time-sensitive networking task group, 2017, URL http://www.ieee802.org/
1/pages/tsn.html. (Accessed: May 2023).

[2] Y. Seol, D. Hyeon, J. Min, M. Kim, J. Paek, Timely survey of time-sensitive
networking: Past and future directions, IEEE Access 9 (2021) 142506–142527.

[3] IEEE Standard for Local and Metropolitan Area Networks – Bridges and
Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic, IEEE
Std 802.1Qbv-2015, IEEE, Piscataway, NJ, 2016, http://dx.doi.org/10.1109/
IEEESTD.2016.8613095, (Amendment to IEEE Std 802.1Q-2014).

[4] C. Simon, M. Maliosz, M. Mate, Design aspects of low-latency services with
11

time-sensitive networking, IEEE Commun. Stand. Mag. 2 (2) (2018) 48–54.
[5] W. Steiner, S.S. Craciunas, R.S. Oliver, Traffic planning for time-sensitive
communication, IEEE Commun. Stand. Mag. 2 (2) (2018) 42–47.

[6] L.L. Bello, W. Steiner, A perspective on IEEE time-sensitive networking for
industrial communication and automation systems, Proc. IEEE 107 (6) (2019)
1094–1120.

[7] A.A. Atallah, G.B. Hamad, O.A. Mohamed, Routing and scheduling of time-
triggered traffic in time-sensitive networks, IEEE Trans. Ind. Inform. 16 (7)
(2020) 4525–4534.

[8] S.S. Craciunas, R.S. Oliver, W. Steiner, Formal scheduling constraints for
time-sensitive networks, 2017, arXiv:1712.02246.

[9] R. Dobrin, N. Desai, S. Punnekkat, On fault-tolerant scheduling of time sensitive
networks, in: International Workshop on Security and Dependability of Critical
Embedded Real-Time Systems, CERTS, 2019.

[10] X. Jin, C. Xia, N. Guan, C. Xu, D. Li, Y. Yin, P. Zeng, Real-time scheduling
of massive data in time sensitive networks with a limited number of schedule
entries, IEEE Access 8 (2020) 6751–6767.

[11] F. Ansah, M.A. Abid, H. de Meer, Schedulability analysis and GCL computation
for time-sensitive networks, in: IEEE International Conference on Industrial
Informatics, INDIN, 2019.

[12] F. Dürr, N.G. Nayak, No-wait packet scheduling for IEEE time-sensitive networks
(TSN), in: Proceedings of the 24th International Conference on Real-Time
Networks and Systems, RTNS, 2016.

[13] M. Kim, D. Hyeon, J. Paek, eTAS: Enhanced time-aware shaper for supporting
non-isochronous emergency traffic in time-sensitive networks, IEEE Internet
Things J. 9 (13) (2021) 10480–10491.

[14] Z. Zhou, J. Lee, M.S. Berger, S. Park, Y. Yan, Simulating TSN traffic scheduling
and shaping for future automotive ethernet, J. Commun. Netw. 23 (1) (2021)
53–62.

[15] N.G. Nayak, F. Dürr, K. Rothermel, Incremental flow scheduling and routing in
time-sensitive software-defined networks, IEEE Trans. Ind. Inform. 14 (5) (2017)
2066–2075.

[16] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, G. Mühl, ILP-based
joint routing and scheduling for time-triggered networks, in: Proceedings of the
25th International Conference on Real-Time Networks and Systems, RTNS, 2017.

[17] F. Smirnov, M. Glaß, F. Reimann, J. Teich, Optimizing message routing
and scheduling in automotive mixed-criticality time-triggered networks, in:
ACM/IEEE Design Automation Conference, DAC, 2017.

[18] L. Xu, Q. Xu, Y. Zhang, J. Zhang, C. Chen, Co-design approach of scheduling
and routing in time sensitive networking, in: IEEE Conference on Industrial
Cyberphysical Systems, ICPS, 2020.

[19] A. Alnajim, S. Salehi, C.-C. Shen, Incremental path-selection and schedul-
ing for time-sensitive networks, in: IEEE Global Communications Conference,
GLOBECOM, 2019.

[20] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, R. Hummen, How
to optimize joint routing and scheduling models for TSN using integer linear
programming, in: Proceedings of the 29th International Conference on Real-Time
Networks and Systems, RTNS, 2021.

[21] M.G. Bellemare, W. Dabney, R. Munos, A distributional perspective on
reinforcement learning, in: International Conference on Machine Learning, 2017.

[22] K. Gong, D. Yang, W. Zhang, J. Ren, An efficient scheduling approach for multi-
level industrial chain flows in time-sensitive networking, Comput. Netw. 221
(2023) 109516.

[23] N.G. Nayak, F. Dürr, K. Rothermel, Time-Sensitive Software-Defined Network
(TSSDN) for real-time applications, in: International Conference on Real-Time
Networks and Systems, 2016.

[24] V. Balasubramanian, M. Aloqaily, M. Reisslein, An SDN architecture for time
sensitive industrial IoT, Comput. Netw. 186 (2021) 107739.

[25] C. Gärtner, A. Rizk, B. Koldehofe, R. Guillaume, R. Kundel, R. Steinmetz,
Fast incremental reconfiguration of dynamic time-sensitive networks at runtime,
Comput. Netw. 224 (2023) 109606.

[26] L. Yang, Y. Wei, F.R. Yu, Z. Han, Joint routing and scheduling optimiza-
tion in time-sensitive networks using graph-convolutional-network-based deep
reinforcement learning, IEEE Internet Things J. 9 (23) (2022) 23981–23994.

[27] H. Yu, T. Taleb, J. Zhang, Deep reinforcement learning based deterministic
routing and scheduling for mixed-criticality flows, IEEE Trans. Ind. Inform. 19
(8) (2023) 8806–8816.

[29] IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged
Local Area Networks Amendment 12: Forwarding and Queuing Enhancements
for Time-Sensitive Streams, IEEE Std 802.1Qav-2009, IEEE, Piscataway, NJ,
2010, http://dx.doi.org/10.1109/IEEESTD.2009.5375704, (Amendment to IEEE
Std 802.1Q-2005).

[30] IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged
Networks - Amendment 34: Asynchronous Traffic Shaping, IEEE Std 802.1Qcr-
2020, IEEE, Piscataway, NJ, 2020, http://dx.doi.org/10.1109/IEEESTD.2020.
9253013, (Amendment to IEEE Std 802.1Q-2018).

[31] IEEE Standard for Local and Metropolitan Area Networks–Virtual Bridged Local
Area Networks Amendment 14: Stream Reservation Protocol (SRP), IEEE Std
802.1Qat-2010, 1–119, IEEE, Piscataway, NJ, 2010, http://dx.doi.org/10.1109/

IEEESTD.2010.5594972, (Revision of IEEE Std 802.1Q-2005).

http://dx.doi.org/10.1109/IEEESTD.2018.8403927
http://dx.doi.org/10.1109/IEEESTD.2018.8403927
http://dx.doi.org/10.1109/IEEESTD.2018.8403927
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb2
http://www.ieee802.org/1/pages/tsn.html
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb2
http://www.ieee802.org/1/pages/tsn.html
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb2
http://www.ieee802.org/1/pages/tsn.html
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb3
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb3
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb3
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb5
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb6
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb7
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb9
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb9
http://arxiv.org/abs/1712.02246
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb10
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb10
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb10
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb10
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb10
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb11
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb12
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb13
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb14
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb15
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb16
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb17
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb18
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb19
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb20
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb21
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb22
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb23
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb24
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb25
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb26
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb27
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb28
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb28
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb28
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb28
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb28
http://dx.doi.org/10.1109/IEEESTD.2009.5375704
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2010.5594972
http://dx.doi.org/10.1109/IEEESTD.2010.5594972
http://dx.doi.org/10.1109/IEEESTD.2010.5594972


Computer Networks 235 (2023) 109983J. Min et al.
[32] C.J.C.H. Watkins, Learning from Delayed Rewards, King’s College, Cambridge
United Kingdom, 1989.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, 2013, arXiv preprint
arXiv:1312.5602.

[34] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman, K.
Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent,
C. Harris, V. Vanhoucke, E. Brevdo, TF-agents: A reliable, scalable and easy to
use TensorFlow library for contextual bandits and reinforcement learning, 2018,
URL https://github.com/tensorflow/agents. (Accessed: May 2023).

[35] A. Berisa, L. Zhao, S.S. Craciunas, M. Ashjaei, S. Mubeen, M. Daneshtalab, M.
Sjödin, AVB-aware routing and scheduling for critical traffic in time-sensitive
networks with preemption, in: Proceedings of the 30th International Conference
on Real-Time Networks and Systems, RTNS 2022, 2022.

[36] L. Zhao, P. Pop, S.S. Craciunas, Worst-case latency analysis for IEEE 802.1Qbv
time sensitive networks using network calculus, IEEE Access 6 (2018)
41803–41815.

[37] L. Zhao, P. Pop, Q. Li, J. Chen, H. Xiong, Timing analysis of rate-constrained
traffic in ttethernet using network calculus, Real-Time Syst. 53 (2) (2017)
254–287.

[38] IEEE Standard for Local and Metropolitan Area Networks –Frame Replication and
Elimination for Reliability, IEEE Std 802.1CB, 1–102, IEEE, Piscataway, NJ, 2017,
http://dx.doi.org/10.1109/IEEESTD.2017.8091139, IEEE Std 802.1CB-2017.

[39] A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M.-P. Stanica, P.
Didier, R. Hummen, R. Blair, T. Enzinger, Time sensitive networks for
flexible manufacturing testbed characterization and mapping of converged
traffic types, 2019, URL https://hub.iiconsortium.org/portal/Whitepapers/
5eb04d87d2df3f001102b6fe. (Accessed: May 2023).

[40] D. Pannell, AVB - generation 2 latency improvement options - IEEE 802,
2011, URL https://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-
latency-options-1111-v2.pdf. (Accessed: May 2023).

Junhong Min received his B.S. degree from the School of
Computer Science and Engineering, Chung-Ang University,
Seoul, Republic of Korea, in 2021. He is currently contin-
uing his study towards M.S. degree in the Department of
Computer Science and Engineering at Chung-Ang University.
He is also a research assistant at the Networked Systems
Laboratory (NSL) led by Dr. Jeongyeup Paek, with research
interests in time sensitive networking.

Yongjun Kim received his B.S. and M.S. degree from the
Department of Computer Science and Engineering at Chung-
Ang University, Seoul, Republic of Korea in 2019 and
2021, respectively. He was also a research assistant at the
Networked Systems Laboratory (NSL) led by Dr. Jeongyeup
Paek, with research interests in time sensitive networking.
He is currently a software engineer at TmaxSoft.
12
Moonbeom Kim received his B.S. degree in Computer
and Information Communications Engineering from Hongik
University in 2017, and the M.S. degree in Computer
Science and Engineering from Chung-Ang University, Seoul,
Republic of Korea, in 2020. He is currently pursuing the
Ph.D. degree in Computer Science and Engineering. He
is also a research assistant with the Networked Systems
Laboratory (NSL) led by Dr. Jeongyeup Paek, with re-
search interests in wireless networking, localization, and
time-sensitive networking.

Jeongyeup Paek received his B.S. degree from Seoul
National University in 2003 and his M.S. degree from
University of Southern California in 2005, both in Electrical
Engineering. He then received his Ph.D. degree in Computer
Science from the University of Southern California (USC)
in 2010. He worked at Deutsche Telekom Inc. R&D Labs
USA as a research intern in 2010, and then joined Cisco
Systems Inc. in 2011 where he was a Technical Leader in
the Internet of Things Group (IoTG), Connected Energy Net-
works Business Unit (CENBU, formerly the Smart Grid BU).
In 2014, he was with the Hongik University, Department
of Computer Information Communication as an assistant
professor. Jeongyeup Paek is currently an associate professor
at Chung-Ang University, School of Computer Science and
Engineering, Seoul, Republic of Korea since 2015. He is
on the editorial board of Journal of Communications and
Networks (JCN) and Sensors. He is an IEEE senior member
and an ACM member.

Ramesh Govindan is the Northrop Grumman Chair in
Engineering and Professor of Computer Science and Elec-
trical Engineering at the University of Southern California.
Dr. Govindan received the B.Tech degree from the Indian
Institute of Technology at Madras, and the M.S. and Ph.D.
degrees from the University of California at Berkeley. Prior
to joining USC he was a member of the technical staff at
Bell Communications Research, and a project leader at USC’s
Information Sciences Institute and at the International Com-
puter Science Institute at Berkeley. Dr. Govindan’s research
has focused on scalable and robust routing infrastructures
in large networks such as the Internet, on the structural
properties of the Internet, and on the architectures and
programming systems for wireless and mobile networks. He
is a Fellow of the ACM and of the IEEE, the recipient of
the 2018 IEEE Internet Award, a former Editor-in-Chief of
the IEEE Transactions on Mobile Computing, and a Dis-
tinguished Alumnus of the Indian Institute of Technology,
Madras.

http://refhub.elsevier.com/S1389-1286(23)00428-0/sb32
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb32
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb32
http://arxiv.org/abs/1312.5602
https://github.com/tensorflow/agents
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb35
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb36
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb37
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb37
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb37
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb37
http://refhub.elsevier.com/S1389-1286(23)00428-0/sb37
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
https://hub.iiconsortium.org/portal/Whitepapers/5eb04d87d2df3f001102b6fe
https://hub.iiconsortium.org/portal/Whitepapers/5eb04d87d2df3f001102b6fe
https://hub.iiconsortium.org/portal/Whitepapers/5eb04d87d2df3f001102b6fe
https://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf
https://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf
https://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf

	Reinforcement learning based routing for time-aware shaper scheduling in time-sensitive networks
	Introduction
	Related Work
	Background
	IEEE 802.1Qbv Time-Aware Shaping (TAS)
	Reinforcement Learning (RL)

	Design
	DRR — Distributional RL-based Routing
	PSS — Path Step Scheduling

	Evaluation
	Simulation Setup
	Performance of routing and scheduling
	Performance of PSS scheduler with static routing

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


