
Load Balancing Under Heavy Traffic in RPL
Routing Protocol for Low Power and

Lossy Networks
Hyung-Sin Kim, Hongchan Kim, Jeongyeup Paek, and Saewoong Bahk, Senior Member, IEEE

Abstract—RPL is an IPv6 routing protocol for low-power and lossy networks (LLNs) designed to meet the requirements of a wide range

of LLN applications including smart grid AMIs, industrial and environmental monitoring, and wireless sensor networks. RPL allows bi-

directional end-to-end IPv6 communication on resource constrained LLN devices, leading to the concept of the Internet of Things (IoT)

with thousands andmillions of devices interconnected throughmultihopmesh networks. In this article, we investigate the load balancing

and congestion problem of RPL. Specifically, we show that most of the packet losses under heavy traffic are due to congestion, and a

serious load balancing problem appears in RPL in terms of routing parent selection. To overcome this problem, this article proposes a

simple yet effective queue utilization basedRPL (QU-RPL) that achieves load balancing and significantly improves the end-to-end packet

delivery performance compared to the standard RPL.QU-RPL is designed for each node to select its parent node considering the queue

utilization of its neighbor nodes as well as their hop distances to an LLN border router (LBR). Owing to its load balancing capability,QU-

RPL is very effective in lowering queue losses and increasing the packet delivery ratio.We implementQU-RPL on a low-power

embedded platform, and verify all of our findings through experimental measurements on a real testbed of amultihop LLN over IEEE

802.15.4.We present the impact of each design element ofQU-RPL on performance in detail, and also show thatQU-RPL reduces the

queue loss by up to 84 percent and improves the packet delivery ratio by up to 147 percent compared to the standard RPL.

Index Terms—Low-power lossy network (LLN), RPL, IPv6, 6LoWPAN, IEEE 802.15.4, load balancing, congestion control, routing, wireless

sensor network

Ç

1 INTRODUCTION

LOW-POWER and lossy networks (LLNs) comprised of
thousands of embedded networking devices can be

used in a variety of applications including smart grid auto-
mated metering infrastructures (AMIs) [2], [3], industrial
monitoring [4], [5], and wireless sensor networks [6], [7],
[8]. Recently, most LLN deployments employ the open and
standardized IP/IPv6-based architecture to connect with
the larger Internet. This approach makes LLNs more inter-
operable, flexible, and versatile, leading to the emerging
concept of the Internet of Things (IoT). With the support of
various standardization efforts from the IEEE, IETF, and
Zigbee, IoT systems are now equipped with protocols and
application profiles that are ready for large-scale deploy-
ments [9], [10], [11], [12], [13]. Among these, this article
focuses on the load-balancing problem of the recently stan-
dardized IPv6 routing protocol for LLN, termed RPL [9].

RPL is designed for resource constrained embedded devi-
ces to support upcoming smart grids and many other LLN

applications [9]. It is a distance vector type routing protocol
that builds directed acyclic graphs (DAGs) based on routing
metrics and constraints. In most deployment scenarios, RPL
constructs tree-like routing topology called destination-
oriented directed acyclic graph (DODAG) rooted at an LLN
border router (LBR), and supports bi-directional IPv6 com-
munication between network devices. Each node in RPL
advertises routing metrics and constraints through DODAG
information object (DIO) messages, and builds a DAG
according to its objective function (OF, rules governing how
to build a DAG) and the information in DIOmessages. Upon
receiving DIOmessages from its neighbors, a node chooses a
routing parent according to its OF and local policy, and then
constructs a routing topology (i.e., DODAG).

Cisco’s field area network (FAN) solution for smart
grids [2] (CG-Mesh) is a good commercial example that
uses RPL in LLNs. It is based on the IPv6 architecture, and
uses IEEE 802.15.4g/e at the PHY and MAC layer to form
LLNs. On top of that, it uses 6LoWPAN[11], RPL, and IPv6
to provide end-to-end two-way communication to each
smart metering endpoint. It supports up to 5,000 nodes per
LBR (DODAG root), and envisions millions of nodes within
a FAN. Cisco’s CG-Mesh system provides an initial evi-
dence that use of IPv6 and RPL over IEEE 802.15.4 is feasible
towards large scale LLNs. It is also part of growing industry
efforts to invest in LLN solutions to facilitate IoT. Further-
more, it shows that although RPL has been mainly designed
and used for low rate traffic scenarios, it needs to be capable
of handling high rate traffic. This is because, even though

� H.-S. Kim, H. Kim, and S. Bahk are with the Department of Electrical
and Computer Engineering and INMC, Seoul National University, Seoul
08826, Republic of Korea.
E-mail: {hskim, hckim}@netlab.snu.ac.kr, sbahk@snu.ac.kr.

� J. Paek is with the School of Computer Science and Engineering,
Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea.
E-mail: jpaek@cau.ac.kr.

Manuscript received 31 July 2015; revised 15 May 2016; accepted 16 June
2016. Date of publication 27 June 2016; date of current version 2 Mar. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2016.2585107

964 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

1536-1233� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

each node generates low rate data, nodes near a sink (i.e.,
LBR) have to relay very high rate traffic. For this reason,
congestion and load-balancing issues need to be investi-
gated for RPL under high traffic scenarios [14].

In this article, we tackle the load balancing and conges-
tion problem of RPL. To do so, we first provide an experi-
mental measurement study of RPL in high traffic scenario
on a real multihop LLN with low-power embedded devices.
As a result, we identify that most of packet losses under
heavy traffic are due to congestion, and that there exists a
serious load balancing problem in RPL in terms of routing
parent selection. To solve this problem, we propose a simple
yet effective enhancement to RPL, termed “Queue Utilization
based RPL” (QU-RPL), that significantly improves the end-
to-end packet delivery performance by balancing the traffic
load within a routing tree. We show performance enhance-
ments of QU-RPL through experimental measurements on a
real multihop LLN testbed running RPL over IEEE 802.15.4.

We evaluate our proposal against a prototype implemen-
tation of RPL in TinyOS, called TinyRPL, which uses the
default objective function OF0 [15] and hop count based
routing metric. We call this default RPL or simply RPL to dis-
tinguish it from our proposed QU-RPL. Our implementa-
tion of QU-RPL is a modification on this implementation.

It is worth noting that the RPL standard [9] decouples the
definition of OFs and routing metrics from the main stan-
dard to provide a high degree of flexibility. It allows imple-
mentations to freely choose OFs, local policies, routing
metrics, and constraints to be used for parent selection.
Thus, our proposal can be regarded as optional from the
viewpoint of an RPL implementation, and it is still standard
compliant. Similarly, the TinyRPL implementation which
combines the hop count for rank calculation (OF) and the
ETX for parent selection is also standard compliant.

Although there have been a lot of performance evalua-
tion studies on RPL in LLNs [3], [16], [17], [18], [19], [20],
[21], [22], there is no experimental study of load balancing
in RPL over a real multihop multinode LLN testbed. Our
results and findings will provide an understanding of the
load balancing problem in RPL and suggest its enhance-
ments to build up large scale LLNs.

The remainder of this article is structured as follows. Sec-
tion 2 presents the background and related work to clarify
the motivation of our work, and Section 3 describes the con-
sidered scenario and experimental environments. Then, Sec-
tion 4 discusses the load balancing problem of RPL and its
implementation based on TinyRPL. Next, Section 5 proposes
QU-RPL as a simple but efficientway to alleviate the load bal-
ancing problem, and Section 6 compares the performance of
QU-RPL andRPL using testbed experiments. Section 7 exper-
imentally shows the effect of each design element inQU-RPL
on its performance. Finally Section 8 concludes the article.

2 BACKGROUND AND RELATED WORK

Path selection and topology construction in RPL are governed
byOFs and routingmetrics used by RPL. The OF defines how
to use link metrics and constraints for the rank computation,
and how to select and optimize routes in a DODAG. How-
ever, the RPL standard [9] does not mandate any particular
OF nor routing metric to be used, and leaves this open to

implementations. Thus, it offers a great flexibility in meeting
different optimization criteria required by a wide range of
deployments, applications, and network design. IETF has
defined some recommendations on how to implement
OFs [15], [23], [24], but without specifying routing metrics to
be used, and still leaves the exact selection of a parent set as
an implementation choice. RFC 6551 [25] proposed some rout-
ing metrics and constraints to be used for path calculation in
RPL, but also leaves the specific selection to implementations.

For this reason, most prototype implementations of RPL
use OF0 [15] as their default OF1 while combining ideas
from the ‘minimum rank with hysteresis objective function’
(MRHOF) [23]. They also use simple routing metrics such as
hop count or ETX or their combination for path calculation
and parent selection. For example, TinyRPL implementation
in TinyOS uses OF0 with hop count for path calculation,
and also uses ETX with hysteresis at the link level for parent
selection. Furthermore, Cisco’s CG-Mesh system [2] is
known to use the ETX objective function (ETXOF) [24]
which can be regarded as MRHOF combined with ETX met-
ric, and the RPL implementation in Contiki uses MRHOF.
All of these implementations are standard compliant thanks
to its great flexibility.

Thus design and selection of OFs and routing metrics
that meet requirements of applications and network topol-
ogy are still an open research issue. Recently, Goddour
et al. proposed QoS aware fuzzy logic OF (OF-FL) that
combines a set of metrics to provide a configurable routing
decision based on fuzzy parameters with an aim of sup-
porting various application requirements [26]. In [27], the
authors proposed a combination of two routing metrics
among hop count, ETX, remaining energy, and RSSI. They
also proposed two ways of combining these metrics, sim-
ple combination and lexical combination, and compared
their performance and tradeoffs.

The work in [28] analyzed the impact of OFs on network
topology using OF0 and link quality OF (LLQ OF). The
authors in [29] proposed a delay efficient RPL routing met-
ric. Macro et al. proposed two MAC-based routing metrics
that consider not only ETX but also packet losses due to
MAC contention [30]. They also considered traffic load in
the viewpoint of power consumption and reliability
required at application level. However, none of these works
investigate the load-balancing problem. The RFC6552 for
OF0, which is most widely used, explicitly states that there
is no attempt to perform any load balancing. Our work is to
fill this gap and to provide a mechanism that achieves load
balancing while conforming to the RPL standard.

Aside from investigating OFs and routing metrics, sev-
eral prior pieces of work have investigated the performance
of RPL under various scenarios and configurations. Ko et al.
experimentally evaluated the performance of RPL using
TinyRPL implementation in TinyOS [17], and have shown
that its performance is similar to that of collection tree pro-
tocol, the de facto data collection protocol in TinyOS, while
having the benefit of an IPv6-based architecture. In [31], the

1. OF0 is designed as a default OF of RPL that will allow interopera-
tion between implementations in a wide spectrum of use cases. How-
ever, it still does not define which link properties to be used as routing
metrics.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 965

authors also evaluated and compared the performances of
ContikiRPL and TinyRPL using the two most widely used
operating systems in wireless sensor networks, i.e., Contiki
and TinyOS. They showed that, although their performance
can be made comparable, parameter selection and imple-
mentation details have significant effects on the perfor-
mance and interoperability of the network consisting of
both implementations.

Furthermore, in [19], Herberg et al. compared RPL with
LOAD using NS-2 simulations and found that LOAD incurs
less overhead if the traffic pattern is bi-directional. The
work in [21] presented simulation results on the network
convergence process of RPL over an IEEE 802.15.4 multihop
network, and investigated improvements and trade-offs.
In [20], Accettura et al. analyzed performance of RPL using
COOJA simulations, and Clausen et al. provided a critical
evaluation of RPL regarding limitations, trade-offs, and sug-
gestions for improvements [18]. The work in [8] addressed
the reliability problem of downward routing in RPL and
designed an asymmetric transmission power-based net-
work where the root directly transmits downlink packets to
destination nodes using much higher transmission power
than low power nodes. Ko et al. investigated the interopera-
bility problem of two modes of operations (MOPs) defined
in the RPL standard, and show that there exists a serious
connectivity problem when two MOPs are mixed within a
single network [22]. To address this issue, the authors pro-
posed DualMOP-RPL that supports nodes with different
MOPs to communicate gracefully in a single network while
preserving the high bi-directional data delivery perfor-
mance. However, none of these works have investigated
nor tackled the load balancing problem of RPL over a real
multihop LLN testbed.

Ha et al. investigated the load balancing problem when
using multiple gateways [32]. They proposed MLEq and
compared its performance to that of RPL. However, they
reduce traffic congestion only by using additional gateways
and does not address the load balancing problem in an LLN
with a single gateway. Liu et al. tackled the load balancing
problem in a single gateway network and proposed LB-RPL
which improves load balancing performance of RPL [33]. It

is similar to our work in that LB-RPL allows a node to prior-
itize its parent candidates considering their queue utiliza-
tion (QU). However, a node detects the queue utilization
information of its neighbors from how long a neighbor
delays its DIO transmission; if a node is congested, it delays
the dissemination of routing information. This is problem-
atic because DIO packet losses and use of TrickleTimer do
not allow DIO reception time to exactly reflect the queue
utilization. Furthermore, it causes slow recovery due to
long DIO transmission interval and herding effect by always
removing the congested parent from the parent candidate
set. More importantly, both of these work evaluated their
proposed schemes using NS-2 simulations, and neither con-
duct experiments in a real LLN nor implement their
schemes on real embedded devices.

3 SYSTEM MODEL

Let’s consider an IoT LLN system as depicted in Fig. 1.
There are thousands of LLN endpoints that form a low-
power lossy mesh network rooted at an LBR. The LBR con-
nects the LLN to a wide area network (WAN) which can
be either the public Internet or a private IP-based net-
work [34]. Multiple servers for various purposes such as
applications (e.g., CoAP), network management, DHCP,
security, etc. reside behind the WAN. In this scenario, LLN
endpoints utilize IEEE 802.15.4 links to communicate with
each other, and use RPL to construct routes towards the
LBR. On top of that, endpoints use IPv6 to communicate
with servers. In this work, we focus on uplink traffic from
LLN endpoints to servers.

To study the data delivery performance of RPL in multi-
hop LLNs, we have configured a testbed environment as
depicted in Fig. 2. There are 30 LLN endpoints and one LBR
(marked with the star) in an office environment. The LBR is
composed of a Linux desktop PC and an LLN interface
which uses ppprouter stack in TinyOS and forwards IPv6
packets to the PC through UART at a baud rate of 115,200.
Each LLN node is a TelosB clone device [35] with an
MSP430 microcontroller and a CC2420 radio, and uses a
transmission power of �13dBm with an antenna gain of
5dB which forms a 5�6-hop network in our testbed.

TinyOS was used as an embedded software in our
experiments. The IPv6 stack and the RPL implementation in
TinyOS are called BLIP and TinyRPL, respectively. We have
not used a duty cycling mechanism such as low power
listening [36], [37] to focus on high rate traffic, and each

Fig. 1. Illustration of an IoT multihop LLN scenario.

Fig. 2. Testbed topologymapwith a snapshot of routing path given byRPL.

966 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

node employs the default CSMA of TinyOS and a FIFO
transmit queue size of 10 packets.

Using the above hardware and software setup for the
experiments, we consider relatively high data rates where
each node sends a data packet every 2 seconds, i.e., 30 pack-
ets per minute (ppm), or faster. Even though each node gen-
erates low rate data in typical LLN applications, traffic
environments given by large scale applications such as
smart grids can lead to a congested scenario. For example,
in a network consisting of 5,000 nodes as in Cisco’s CG-
Mesh deployment, one packet generation every � 5:5
minutes at each node corresponds to the same traffic load at
the bottlenecked LBR in our test scenario.

Finally, as depicted in Fig. 3, each LLN node is connected
to a PC via USB and sends log messages to the PC through
UART back-channel. We gather the log messages from each
PC through ethernet back-channel, obtaining various per-
formance measurements and real-time operation status.
Furthermore, we remotely reprogram each node through
the UART and ethernet back-channels. The two back-chan-
nels are only for debugging and statistics gathering, and are
not used for data communication between nodes.

4 PROBLEM: RPL WITH OF0

In this section, we first provide an experimental measure-
ment study of RPL with OF0 in high traffic scenarios on a
real multihop LLN testbed. We show that most of packet
losses in high traffic scenarios are due to congestion, and
that there exists a serious load balancing problem in RPL in
terms of routing parent selection. We then describe the

TinyRPL implementation as a basis for describing our QU-
RPL in Section 5.

4.1 Load Balancing Problem of RPL

Fig. 4 plots the end-to-end packet reception ratio (PRR) of
RPL (default TinyRPL) with varying traffic load for
uplink UDP from all 30 nodes. The packet interval of
each node varies from 0.8 to 2 seconds (i.e., 30 to 75
ppm). Considering a network size of 5,000 nodes, this cor-
responds to the packet interval of 2.2 to 5.5 minutes per
node (i.e., 0.18 to 0.45 ppm per node). From the figure,
first of all, we observe that our testbed provides near per-
fect PRR for all nodes when the traffic load is light, mean-
ing that RPL establishes a reliable routing topology in our
wireless environments. However, the PRR degrades rap-
idly with the traffic load, and there are some nodes with
PRR as low as �20 percent at heavy load. Although some
level of degradation is expected due to collisions and
interference caused by higher traffic, this result is much
more severe than expected.

Then our first question is, “what are the reasons for packet
loss?” To investigate this, we have collected data on how
many packets are lost at the link layer and also at the packet
queue within a node. We found that the link loss is negligi-
ble (< 0.2 percent) even in a heavy traffic scenario, and
most of packet losses occur at the packet queue within a
node (Fig. 5). In other words, queue loss is the main reason
for PRR degradation in high traffic scenarios. Furthermore,
queue loss occurs very severely only at a few nodes, which
are suffering extremely high relay burden.

Then our next question is, “is unbalanced queue loss nat-
ural and unavoidable in a multihop network?” It may be nat-
ural that nodes closer to the sink experience more relay
burden and inevitably experience high queue losses in
high traffic scenarios. However, our investigation claims
otherwise as shown in Fig. 6, which depicts the queue
loss ratio of each node according to its hop distance from
the LBR, for both light and heavy loads. At heavy load,
queue loss is significantly unbalanced even among nodes
with the same hop distance from the LBR. Specifically,
only one node (node 7) experiences very high queue loss
ratio among seven nodes which have hop distance of one.
Likewise, only one node (node 19) suffers from severe
queue loss among five nodes which have hop distance of
two. These results lead us to infer that the unbalanced
queue loss comes from the unbalanced, and thus ineffi-
cient, parent selection mechanism of RPL.

Fig. 3. Testbed architecture to monitor and reprogram each LLN node.

Fig. 4. End-to-end packet reception ratio (PRR) versus uplink traffic load.

Fig. 5. IP layer packet loss ratio of each node versus uplink traffic load.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 967

We verify our intuition using evidences in Figs. 7 and
8. First, Fig. 7 depicts subtree size of each node according
to its hop distance from the LBR at traffic load of 60
ppm/node, which shows that subtree size is also signifi-
cantly unbalanced. More importantly, Fig. 8 depicts
queue loss ratio of each node according to its RPL subtree
size at the same traffic load, which shows that queue loss
ratio is roughly proportional to subtree size. Since each
node generates data traffic at a same rate, having more
nodes in its routing subtree means that more traffic will
flow through that node. Lastly, a closer look into the data
reveal that the nodes 7 and 19 which have large subtree
sizes are exactly the nodes with large queue losses. Thus,
we can confirm that unbalanced queue loss comes from
unbalanced routing tree. In other words, queue loss is not
inevitable but can be reduced significantly by designing
an enhanced RPL that balances the subtree size under
heavy traffic.

Our last question is, “does the link ETX used for parent
selection reflect traffic congestion?” Our observation again
indicates otherwise as shown in Fig. 9, which depicts the
link ETX of each node with varying uplink traffic load.
Interestingly, the ETX does not increase notably even in
heavy traffic because the link capacity is higher than the
queue capacity. It is due to the fact that RPL is imple-
mented on low cost and resource constrained devices
which provide queue sizes much smaller than the devices
used for high rate communication such as LTE or WiFi
(i.e., 1,000 packets at IP layer by default and more than 100
packets at link layer). Small queues start to overflow before

traffic congestion becomes heavy enough to be recognized
using ETX, and as a result, a node does not change its par-
ent node even when the parent continuously suffers queue
losses. For this reason, it is desirable to use a new routing
metric and a parent selection strategy to alleviate the load
balancing problem of RPL.

4.2 TinyRPL—RPL Implementation with OF0

In this section we describe TinyRPL, i.e., the default RPL
implementation in TinyOS 2.1.2 (latest), which implements
the RPL standard [9] with OF0 along with the hop count
metric for rank calculation and the ETX for parent selection.

RPL broadcasts the routing information using DIO mes-
sages which are transmitted based on the TrickleTimer [38]
to achieve a balance between control overhead and fast
recovery. To this end, the TrickleTimer doubles the broad-
cast period after every DIO transmission and re-initializes it
to a minimum value when route inconsistency is detected.
Furthermore, RANK is defined and used by the OF to repre-
sent the routing distance from a node to the LBR, and link
and node metrics are used for RANK calculation and parent
selection.

TinyRPL with OF0 uses hop count for RANK calculation,
and together with ETX for parent selection. Specifically,
RANK of node k is defined as

RANK kð Þ ¼ h kð Þ þ 1; (1)

where hðkÞ is the hop count between node k and the LBR.
That is, RANKðLBRÞ ¼ 1, and RANK kð Þ ¼ 1 before node
k joins the network. Node k broadcasts DIO messages

Fig. 6. Queue loss ratio of each node versus each node’s hop distance
from the LBR.

Fig. 7. RPL subtree size of each node versus hop distance at traffic load
of 60 ppm/node.

Fig. 8. Queue loss ratio of each node versus RPL subtree size at traffic
load of 60 ppm/node.

Fig. 9. Link layer ETX versus uplink traffic load from all 30 nodes.

968 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

containing RANKðkÞ. ETX k; pkð Þ measured by node k is a
link quality indicator between node k and its parent candi-
date pk, and is defined as

ETX k; pkð Þ ¼ # of total transmissions from k to pk
of successful transmissions from k to pk

:

(2)

RPL smoothes the ETX using an exponentially weighted
moving average (EWMA) filter, making it robust to sudden
changes in link condition.

Each node recognizes its neighbor nodes by DIO mes-
sages received from them. Node k generates its parent can-
didate set Pk from its neighbor setNk as

Pk ¼ nk 2 Nk h nkð Þ < h kð Þ; ETX k; nkð Þ < djf g; (3)

where d is a threshold to remove neighbors which are con-
nected through unreliable links.

Each node performs parent selection process when its
information on parent candidates has been changed. Node

k selects its best alternative parent P̂ k as

P̂k ¼ arg min
pk2Pk

R pkð Þf g; (4)

where RðpkÞ is a routing metric given as

R pkð Þ ¼ RANK pkð Þ þ ETX k; pkð Þ: (5)

Then, it changes its parent node from the current parent

Pk to the best alternative P̂ k if

R P̂k

� �
< R Pkð Þ � s; (6)

where s is a stability bound to mitigate unnecessary and inef-
ficient parent changes, which is set to 0.5 by default. This is a
hysteresis component (similar to MRHOF) of TinyRPL, and
we refer to it as the stability condition. Thus, RPL allows each
node to select a parent nodewhich has a reliable link andmin-
imumhopdistance to the LBR, regardless of traffic load.

5 QU-RPL: QUEUE UTILIZATION BASED RPL

In this section, we propose QU-RPL that is simple, but has
the capability of load balancing which is lacking in RPL.

5.1 Routing Metric Including Congestion
Information

As we revealed in the previous section, ETX is not suited
for early detection of traffic congestion in LLNs. It is due to
the fact that link losses occur much later than queue losses
when congestion starts to grow and becomes heavy enough
to be detected by ETX. The number of nodes in the down-
ward routing table (i.e., subtree size) may be an option to
use for load balancing. However, because this information
is updated by reception of Destination Advertisement
Object (DAO) messages (addition) and timeouts of routing
table entries (deletion), it does not reflect the actual conges-
tion promptly enough.

For these reasons, we choose to use queue utilization factor
at each node k, QðkÞ, for detecting and distributing informa-
tion about congestion, which is defined as

Q kð Þ ¼ Number of packets in queue of node k

Total queue size of node k
: (7)

QU-RPL applies the same EWMA filter for statistical cal-
culation of QðkÞ as for ETX calculation. Furthermore, node
k adjusts QðkÞ after each parent selection using QðkÞ and
QðPkÞ, according to

QðkÞ ¼ max QðPkÞ � �; QðkÞf g: (8)

The intuition behind this adjustment comes from our
observation that when congestion occurs at the parent of
node k, QðPkÞ is usually significantly greater that QðkÞ.
That is, QðkÞ may be small even when Pk is severely con-
gested. However, although a node k has low QU, it is
better not to be selected as a parent by other neighbors
if its parent node suffers from severe congestion. This is
because node k forwards all the packets received from
its children to Pk after all. Thus, QU-RPL performs the
above QU adjustment (Eq. (8)) to lower the probability
of a node being selected when its parent node is con-
gested, where � is a small positive QU reduction factor
which makes QðkÞ < QðPkÞ. We set � as 0.25, which
means that a congested node can trigger QU adjustment
for up to three-hop children nodes.

Finally, forQU-RPL,RðpkÞ is replaced with a new routing
metric RQUðpkÞ, defined as

RQU pkð Þ ¼ h pkð Þ þ 1þ ETX k; pkð Þ þ aQ pkð Þ; (9)

where a is a coefficientwhich controls theweight given to the
QU with respect to the hop count and ETX metric. a should
be greater than one for QU to have a notable effect on the par-
ent selection. Otherwise, QðpkÞ has smaller effect than hðpkÞ
since 0 � Q pkð Þ � 1. We discuss and evaluated the impact of
optimal a selection in detail later in Section 7.5.

5.2 Propagation of Congestion Information

In QU-RPL, each node distributes its QU information to its
neighbor nodes. There are several ways of implementing
this within the RPL standard. One way is to use an optional
Metric Container within the DIO message. For doing so, QU-
RPL needs to newly define the QU Metric Container and
modify the OF to use it while processing the DIO. Another
way is to modify only the OF and redefine RANK to contain
the QU value together with the previously defined RANK
(i.e., hop count). Both approaches are within the scope of
RPL standard [9], and thus standard compliant thanks to
the flexibility and openness of RPL.

To this end, in our QU-RPL implementation, we take the
latter approach and newly define RANKQUðkÞ for the DIO
message to contain both hðkÞ and QðkÞ as follows:

RANKQU kð Þ ¼ b h kð Þ þ 1ð Þ þ b� 1ð ÞQ kð Þ; (10)

where b is a cipher parameter used to embed and decode
two values from a single numeric field.2 Each node broad-
casts the DIO message containing RANKQU , and extracts

2. b can be any reasonable positive integer (e.g., 10 or 100) that keeps
the RANKQU ðkÞ within its 16 bits boundary and allows for determin-
istic decoding of the two values hðnÞ and QðnÞ. For our experiments,
we have used b ¼ 100.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 969

the hop count and the QU of a neighbor node n from its
received RANKQUðnÞ as

h nð Þ ¼ RANKQU nð Þ
b

� �
� 1; (11)

Q nð Þ ¼ mod RANKQU nð Þ;b� �
b� 1

; (12)

respectively, where xb c is the largest integer which is
smaller than or equal to x and modðÞ is modulo operation.
Our QU-RPL implementation provides each node with the
QU information of neighbor nodes without changing the
message format nor adding any optional field to the DIO
message.

However, the current DIO transmission strategy in RPL
does not provide QU information in a timely manner due to
its long TrickleTimer period since it is reset to a minimum
only when changes in routing topology occur. To alleviate
this problem, we also reset the TrickleTimer period when a
node experiences a certain number of consecutive queue
losses.3 While doing this, however, we need to be careful to
minimize the frequency of TrickleTimer re-initialization
since it increases routing overhead (i.e., DIO messages).
Based on these observations, Fig. 10 describes our strategy
for TrickleTimer reset which balances the speed and over-
head of QU information dissemination. Basically, it counts
the number of queue loss events and resets the
TrickleTimer only when it experiences a certain number (’)
of consecutive queue losses and QU indicates congestion
(i.e., QU satisfies the congestion condition (14), explained
below in Section 5.4). After the reset, it additively increases
the ’ threshold to slow down the reset interval and balance
the overhead caused by the reset. Otherwise, if no queue
loss event occurs during the noLoss timeout period, then the
algorithm returns to the initial settings. This reset strategy

allows a node to fast propagate its QU information when it
is congested, which helps its children nodes to quickly
move to another parent nodes, while keeping the overhead
to a minimum.

5.3 Congestion Indicator mk

Before we discuss the parent selection mechanism of QU-
RPL, we first need to define the congestion indicator mk that
detects congestion and triggers the parent change for load-
balancing. For the congestion indicator mk, there are some
candidates such as QðkÞ and QðPkÞ. We empirically
observed that QðkÞ is much smaller than QðPkÞ even when
Pk experiences a lot of queue losses, and thus it cannot
reflect the traffic congestion properly. Moreover, when QðkÞ
is large, the parent selection of node k cannot help reducing
the load. Rather, it is more important to let its children
nodes migrate to another parent. We also observed that
QðPkÞ is a better congestion indicator than QðkÞ, but still
insufficient to meet our needs. This is because, once the traf-
fic load is well balanced after a congestion event as a result
of QU-RPL in action, each node has low QðPkÞ and the con-
gestion condition (14) is not satisfied. Thus each node
changes its parent node in the same way as in RPL, causing
the traffic load to be unbalanced again.

Therefore, we consider exploiting Qk;max which is the
maximum QU among all the parent candidates that node k
had in the recent past, represented as

Qk;max ¼ max max
i2f1;2;3;4g

Q
½i�
k;max; max

pk2Pk
Q pkð Þf g

� �
; (13)

where Q
½i�
k;max is the maxpk2Pk Q pkð Þf g in the recent ith hour.

In other words, we design each node k to record the Q
½i�
k;max

every hour, maintain this record for the recent 4 hours, use
the sliding window to update this information every hour,
and then use the maximum of these values to calculate
Qk;max. With the use ofQk;max, each node memorizes the pre-
vious congestion event, mitigating hasty parent changes
that may occur when the traffic load has been recently bal-
anced by exploiting QU under heavy traffic.

5.4 Parent Selection Mechanism

The two design elements of QU-RPL introduced in the pre-
vious subsections allow each node to consider congestion
when selecting its parent node. However, only using
congestion-aware routing metric and fast QU propagation
mechanism brings another challenge, termed herding effect.
Fig. 11 depicts an example of the herding effect where all the
six 2-hop nodes select the 1-hop node on the left as their

Fig. 10. TrickleTimer reset strategy in QU-RPL.

Fig. 11. An illustration of herding effect in QU-RPL without probabilistic
parent change.

3. It is important whether and when to detect and indicate conges-
tion in response to queue fill up. Since an LLN node has small queue
size, the queue can fill up temporarily even when there is no conges-
tion. Thus, if we declare congestion too early, that often results in false
positive for congestion, and incurs unnecessary DIO overhead. This is
the reason why we reset TrickleTimerafter experiencing consecutive
queue losses.

970 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

parent and incur congestion. The use of new routing metric
and QU propagation in QU-RPL allows the children nodes
to escape from the left parent node by detecting congestion.
The problem is that all of them may change the parent
simultaneously, which incurs congestion again on the right
1-hop node. In this way, a vicious cycle could be created,
where a group of nodes repeat meaningless parent changes
indefinitely without achieving load balancing.

To avoid the herding effect, we add a probabilistic parent
change mechanism to our QU-RPL design. Each node gen-
erates a parent candidate set from its neighbor nodes
according to Eq. (3), and opportunistically includes neigh-
bor nodes with the same rank4 to diversify candidate
parents to avoid congestion. Then, it selects the best alter-
native (new) parent node using Eq. (4) (same as in RPL)
while substituting the routing metric with Eq. (9). How-
ever, QU-RPL operates differently from RPL when deter-
mining whether to switch from the current parent to the
best alternative or not. QU-RPL considers not only the
stability condition given by Eq. (6) but also the traffic con-
gestion condition given by

mk > g; (14)

where mk is the congestion indicator that indicates the traffic
congestion around node k, and g is a threshold value for
deciding when to perform load balancing. If the condition
(14) is satisfied, node k needs to change its parent node con-
sidering load balancing. Otherwise if only the stability con-
dition is satisfied, node k in QU-RPL changes its parent

node from Pk to P̂k in the same way as in the default RPL. In
other words, QU-RPL has the same parent change mecha-
nism as RPL when a node does not experience congestion.

We empirically chose g as 0.5 to reflect the idea that our
load balancing scheme should come into action when the
QU of a congested node is above 50 percent. If we had
selected g to a lower value, unnecessary load balancing
action might take place even when there is no real conges-
tion. This will only cause unnecessary additional overhead
(in terms of DIOs and DAOs) when the current topology is
capable of supporting the given traffic load. If we had
selected g to a higher value, that would delay the detection
of congestion and load balancing effort, which could result
in increased packet losses.

Then, most importantly, if both the stability condition
and the congestion condition are satisfied, node k changes

its parent node from Pk to P̂k with the probability

max k Q Pkð Þ �Q P̂k

� �� �
; 0

� 	
; (15)

where k is a non-negative coefficient which controls what
percentage of children nodes change their parents. That is,
QU-RPL requires a node to probabilistically change its par-
ent considering its QU differences. This probabilistic parent
change is a critical component of QU-RPL to avoid the herd-
ing effect, and we will discuss and evaluate the impact of
optimal k selection on performance in detail in Section 7.5.

5.5 Memory Footprint

Overall, our QU-RPL implementation requires 4,018 bytes
of extra ROM and 22 bytes of extra RAM compared to the
current TinyRPL implementation. That is 10 percent
increase for the ROM (39,516 ! 43,534 bytes) and only 1
percent increase for the RAM (7,402 ! 7,424 bytes), and it
operates well on low cost embedded devices such as TelosB.

6 PERFORMANCE EVALUATION—COMPARISON

WITH RPL

In this section, we evaluate the performance measurement
results for QU-RPL on the testbed setup, and compare it
against TinyRPL.

6.1 Routing Topology

First of all, we graphically describe the effect of QU-RPL on
topology construction using Fig. 12, which depicts a snap-
shot of the routing topology at the end of experiments for
RPL and QU-RPL. Let us consider the physical topology in
Fig. 2 again for analysis. In RPL, when comparing subtrees
of nodes 10 and 19, we can see that node 19 has nearly half
of all the nodes in the network as its children nodes, which
is more than twice larger than what node 10 has. As a result,
node 19 experienced significant relay burden and dropped a
lot of packets at its queue. However, the more critical prob-
lem is that both nodes 10 and 19 have node 7 as their parent
node, which incurs an extremely large number of queue
losses at node 7 and causes significant PRR degradation.
Nodes 7 and 19 are the two which experienced severe queue
loss in Fig. 6. RPL cannot escape from this unbalanced
topology because their children nodes are unaware of the
severe congestion. From the children nodes’ perspective,
they are able to successfully transmit almost all the packets
to their parents, which is expected by their low ETXs.

In contrast, in QU-RPL, although node 19 has the largest
number of nodes in its subtree, the number of children
nodes of node 10 is only one less than that of node 19,
showing balanced load distribution. Furthermore, nodes 8
and 9 have larger subtrees compared to the RPL case.
More importantly, nodes 10 and 19 have different parent
nodes (i.e., nodes 5 and 7, respectively), which significantly
decreases queue loss and improves PRR. Specifically,
nodes 16 and 18 do not select node 19 as their parent node
even though node 19 is with better link quality, resulting
in successful avoidance of traffic congestion. Furthermore,
nodes 20, 21, 24, and 25 do not select node 19 even though
their current choices have resulted in hop distance
increase. The smart use of QU leads those nodes to avoid

Fig. 12. Routing topology change from the default RPL to QU-RPL.

4. A node includes neighbor nodes with the same RANK in the par-
ent candidate set when receiving their DIOs, and removes them when
not selected as the parent node.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 971

traffic congestion by rejecting node 19 even though it has
smaller hop distance. QU-RPL also prevents them from
selecting a child node of node 19 as their parent node. This
is because, through the QU adjustment (8), QU-RPL lowers
the probability that a node having a congested parent is
selected as a parent node.

Quantitatively, the standard deviation of the number of
children nodes per node has decreased from 1.79 to 1.04,
and that of the number of nodes in subtree per node has
decreased from 4.47 to 2.25, which shows that QU-RPL
indeed achieves load balancing of children nodes.

6.2 Packet Delivery Performance

Fig. 13 depicts the queue loss ratio (i.e., dropped packets
divided by injected packets into the IP layer packet
queue) with varying uplink traffic load. We observed
that QU-RPL reduces the queue loss ratio significantly,
up to 84 percent, especially at bottlenecked nodes. This
reveals that the balanced tree topology of QU-RPL, as
shown in Fig. 12, has a critical impact on congestion mit-
igation, and thus enables QU-RPL to achieve lower and
fairer queue loss compared to RPL.

To show more details, we use Fig. 14 which depicts
the data transmission burden of each node with varying
uplink load where outliers are marked with plus sym-
bols. From this figure, we directly observe that QU-RPL
evens out the traffic load much better than RPL. QU-RPL
significantly reduces the data transmission burden on
most congested nodes, while only slightly increasing
those of other nodes. This is the main cause of the queue
loss reduction shown in Fig. 13.

The reduction in queue losses is directly translated into
PRR improvement, as shown in Fig. 15 which depicts
the PRR performance of each node for RPL and QU-RPL
with varying uplink load. It shows that QU-RPL enhan-
ces the PRR performance significantly for most of the
nodes in the network, up to 147 percent. For RPL, its
PRR degradation mainly comes from its inadequate par-
ent selection, which is worsened by the small queues of
embedded devices.

Fig. 16 depicts the link ETX of each node to its parent
node with varying uplink traffic load. We observe that both
RPL and QU-RPL allow a node to select its parent with
good link quality since the measured ETX is at most 2 in all
cases. Moreover, the link ETX results for both protocols do
not vary significantly with different traffic loads, revealing
that the wireless link capacity is not the main cause of
packet loss even under heavy traffic.

Fig. 13. Loss ratio at packet queue versus uplink traffic load.

Fig. 14. Data transmission requests of each node versus uplink traffic load.

Fig. 15. PRR of each node versus uplink traffic load.

Fig. 16. Link ETX of each node to its parent node versus uplink traffic load.

Fig. 17. Hop distance from the LBR versus uplink traffic load.

972 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

Fig. 17 depicts the hop distance of a node from the LBR
with varying uplink traffic load. By comparing the average
hop distance and the hop distance of the farthest node, we
can see that QU-RPL shows similar hop distances to RPL
while achieving load balancing. It is mainly because QU-
RPL exploits the similar criterion of hop distance as RPL
when generating a parent candidate set. Since a node’s
neighbor nodes with large hop distances are already
removed from its parent candidate set, parent selection
considering QU causes only slight increase in its hop dis-
tance from the LBR. Moreover, the QU weighting factor a

of RQUðkÞ can be tuned considering the trade-off between

hop distance and load distribution. For instance, for a ¼ 2,
when a node experiences severe congestion, its parent
node has the distance of at most one hop greater than that
given by RPL.

From the results in Figs. 13-17, we find that simply pro-
viding a multihop route with good link quality (ETX) for
each node is insufficient for large scale applications with
resource constrained (i.e., small queue sized) devices. QU-
RPL requires low implementation cost and low operation
overhead, but achieves significant improvement in packet
delivery performance by using hop distance and QU infor-
mation together.

6.3 Routing Overhead

Before discussing the routing overhead (DIO and DAO
messages) of RPL and QU-RPL, we need to first under-
stand the ranges of traffic load. In general, light traffic
load means that the network is capable of handling the
traffic without congestion at any part of the network.
However, heavy traffic load has two ranges; one where
congestion may or may not occur depending on the par-
ent selection and load balancing, and the other ‘extremely
heavy’ case where congestion is unavoidable even after
load balancing with ‘good’ parent selection. QU-RPL aims
to solve the former case.

Fig. 18 plots the average DIO overhead of each node
under varying uplink traffic load. Each node inQU-RPL gen-
erates extra DIO overhead since it resets its TrickleTimer
more frequently than in RPL to fast distribute the QU infor-
mation when it suffers from consecutive queue losses. When
the traffic load is extremely heavy (i.e., 75 ppm/node) where
the channel bandwidth is close to saturation and the PRR
performance is low even with use of QU-RPL, QU-RPL
incurs considerably more DIO overhead than RPL. This is

because the traffic load is too heavy such that the congestion
problem cannot be solved via load balancing, butQU-RPL is
continuously trying to select less congested parents. How-
ever, the increase in DIO overhead ofQU-RPL is insignificant
compared to the total amount of traffic in the network and
also the great reduction in relay burden of congested nodes.

Even in the lightest traffic scenario where a node gener-
ates 1,800 data packets per hour, the amount of data traffic
is 36 times more than that of DIO traffic. In other words,
overhead is less than 3 percent of the data traffic. Further-
more, RPL requires the most bottlenecked node to transmit
more than 30,000 data packets per hour in the lightest traffic
scenario as shown in Fig. 14, thus its overhead is less than
0.3 percent of the forwarding traffic. Since QU-RPL signifi-
cantly reduces the data transmission burden of bottlenecked
nodes and packet losses at those queues, their overall trans-
mission cost is reduced greatly. We can conclude that
increase in DIO overhead of QU-RPL is a reasonable cost to
pay for much better PRR performance when delivering
heavy traffic.

Fig. 19 depicts the average number of parent changes
of each node with varying uplink traffic load. First of all,
the number of parent changes in RPL is not strongly cor-
related to traffic load since RPL triggers parent changes
using ETX which stays low regardless of traffic load as
shown in Fig. 16. It is also observed that the frequency
of parent change in QU-RPL is similar to that in RPL
when the traffic load increases up to 60 ppm/node, but
significantly higher under extremely heavy traffic (i.e., 75
ppm/node). This is because, under extremely heavy traf-
fic where even the load balancing cannot resolve the con-
gestion, QU-RPL continuously attempts to resolve the
problem by new parent selection.

In RPL, there is another routing overhead of transmitting
DAO messages which are used for downlink route setup
between a node and the LBR. Each node sends DAO mes-
sages toward the LBR periodically5 when its route is consis-
tent, and also when its upstream route has been changed.
Fig. 20 plots the average DAO overhead of each node under
varying uplink traffic load. It shows that QU-RPL requires a
similar amount of DAO overhead compared to RPL up to
60 ppm/node, but it has much higher overhead when load

Fig. 18. Average DIO overhead of each node versus uplink traffic load.
Fig. 19. Number of parent changes of each node versus uplink traffic load.

5. Depending on the implementation, it can be pseudo-periodic. The
RPL standard RFC6550 does not mandate the transmission timing of
DAOmessages.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 973

balancing cannot resolve the congestion due to the same
reason as above.

6.4 Effect of Topology Variation

In this section, we experiment with several different physi-
cal topologies and investigate whether and how topology
variation affects the performance of QU-RPL. For this pur-
pose, we created multiple topologies on the same testbed
deployment (Fig. 2) by modifying the location of the LBR
(root node) and adjusting the transmission power. Our
indoor testbed environment has quite uneven node density
due to obstacles such as doors, walls, windows, etc., which
helps us to generate various topologies. Specifically, the
‘default topology’ refers to the topology in Fig. 2 that we have
been using so far throughout the paper, ‘topology 2’ refers to
a topology where node 9 acts as the LBR with transmission
power of �22 dBm, ‘topology 3’ refers to a topology where
node 14 acts as the LBR with transmission power of �22
dBm, and ‘topology 4’ refers to a topology where node 30
acts as the LBR with transmission power of �9 dBm. For
topologies 2 through 4, the node that was the LBR of the
‘default topology’ acts as a regular data node, and thus the
total number of data nodes remain as 30.

Fig. 21 compares the performances of QU-RPL and RPL
for the considered four topologies when each node gener-
ates upward traffic with 60 ppm. We first observe that per-
formances of both RPL and QU-RPL significantly rely on
topology configuration. However, in all cases, QU-RPL
achieves much better PRR performance than RPL by balanc-
ing traffic load. Results of DIO overhead and hop distance
show the same trends as we explained above. Thus, we
can conclude that QU-RPL achieves more reliable packet
delivery than RPL with slightly larger routing overhead

and hop distance, regardless of node placement and trans-
mission power setting.

6.5 Scalability—A Short Glimpse

To get an idea of the scalability of QU-RPL, we constructed
another larger indoor testbed with 49 nodes (one LBR and
48 LLN enpoints) as shown in Fig. 22 at the basement of our
university building. Note that this testbed is physically dis-
tinct from our earlier testbed which was at the 3rd floor of
our building. On this new testbed, we made each node use
transmission power of �22 dBm, which forms a 5-hop net-
work using RPL. We created two topologies in this larger
testbed. ‘topology 5’ is illustrated in Fig. 22 and ‘topology 6’
refers to a topology where node 45 acts as the LBR and the
LBR of the ‘topology 5’ becomes a data node. Lastly, each
node generates upward traffic with 36 ppm, which makes
the LBR experience traffic load similar to the 60 ppm/node
case in the 30-node testbed.

Figs. 23a-23d compare various performance metrics of
QU-RPL and RPL in the two topologies. Fig. 23a shows that
RPL experiences significantly more packet losses (low PRR)
than QU-RPL in both topologies. Furthermore, Fig. 23b
reveals that this low PRR of RPL does not come from link
losses but queue losses at small number of nodes. These
results confirm that RPL experiences severe load balancing
problem in this larger testbed as well, which implies that
the observations and arguments that we have made in the
earlier sections are still valid in this larger network as well.
That is, the load balancing issue could also be problematic
in a large-scale network.

More importantly, we observe that QU-RPL achieves
more dramatic performance improvement over RPL com-
pared to the 30-node cases. Specifically, QU-RPL improves

Fig. 20. Average DAO overhead of each node versus uplink traffic load.

Fig. 21. Performance of RPL and QU-RPL with various topologies.

Fig. 22. Testbed topology map for scalability test (49 nodes) with a snap-
shot of routing path given by RPL.

974 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

average PRR from 80.53 to 99.65 percent in ‘topology 5’ and
from 76.69 to 99.39 percent in ‘topology 6’. QU-RPL
improves PRR more drastically for the worst performing
node, from 51.16 to 97.41 percent in ‘topology 5’ and from
14.58 to 97.78 percent in ‘topology 6’. We believe this is
because larger (and deeper) network has more opportu-
nity to become unbalanced in terms of tree construction,
which makes load balancing more important and effective.
We also believe that the large number of forwarding traffic
that travels over the multihop network is what makes
larger & deeper multihop networks more challenging than
small & shallow networks in terms of congestion, and thus
load balancing problem becomes more critical.

Fig. 24 graphically depicts the load balancing effect in
‘topology 5’ similar to Fig. 12. We observe that both RPL and
QU-RPL have seven nodes that are connected to the LBR in
a single hop, only three of which have subtree nodes due to
the constraint of given physical topology. However, when
taking a deeper look, we can find out that the two protocols
provide quite different subtrees. RPL constructs the three
subtrees with size of 3, 10 and 28, respectively, which clearly

shows unbalanced topology. In contrast, QU-RPL forms
these subtrees with size of 4, 18 and 19, which achieves load
balancing. Specifically, our QU-RPL reduces standard devi-
ation of the subtree size from 4.8 to 4.3, and size of the larg-
est subtree from 28 to 19.

Moreover, by combining the results of Figs. 23a and 24,
we confirm that the node which suffers from extremely
large number of queue losses when operating RPL in
‘topology 5’ was node 4 (i.e., parent node of the largest sub-
tree with 28 children nodes). This verifies that queue losses
of RPL come from unbalanced tree structure. We have also
verified that QU-RPL constructs balanced tree structure in
‘topology 6’ as well (figure omitted for brevity). All the
results reveal that performance improvement of QU-RPL
comes from its balanced tree topology.

Overall, our experiments on a 49-node testbed verify
that both RPL and QU-RPL exhibit similar behavior as we
observed in the 31-node cases. Furthermore, our experi-
mental results show that impact of load balancing on the
performance becomes more significant in a larger network.
As a final note, even though our experiments cannot cover
the case of real large-scale networks comprising thousands
of nodes, we believe that this load balancing problem will
also occur in these large networks due to two reasons.
First, environmental factors in real LLN deployments such
as obstacles and human activity complicate link character-
istics, which makes some nodes have much more neighbor
nodes than others even if nodes are uniformly deployed.
Second, given that an LLN node is resource-constrained
and has small queue size, higher volume of forwarding
traffic in a large-scale multihop network can cause severe
queue losses.

7 EFFECT OF DESIGN ELEMENTS

In this section, we investigate the effect of each design ele-
ment in QU-RPL on the performance. Our aim is to verify
that each component of QU-RPL contributes to achieving
performance improvement. To this end, we selectively
remove each design element of QU-RPL from the full ver-
sion of QU-RPL, and compare the performance of each
implementation with the full QU-RPL and the default RPL
when each node generates upward traffic with 60 ppm. We
consider PRR, DIO overhead, and the frequency of parent
change as the evaluation metrics.

Fig. 23. Performance of RPL and QU-RPL with two topologies in a
49-node testbed.

Fig. 24. Routing topology change from the default RPL to QU-RPL in ‘topology 5’ of a 49-node testbed.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 975

7.1 TrickleTimer Resetting Strategy

To evaluate the effect of TrickleTimer resetting strategy in
QU-RPL, which fast propagates the QU information of a
node when it experiences congestion, we present Fig. 25
with two additional schemes; ‘Slow QU’ and ‘Fast QU’.
‘Slow QU’ uses the same TrickleTimer as RPL which does
not reset the DIO broadcast period even when a node suf-
fers from congestion. ‘Fast QU’ resets TrickleTimer when-
ever a node experiences more queue losses than a
predetermined threshold (Section 5.2).

From Fig. 25a, we observe that QU-RPL and its variants
provide better PRR than RPL thanks to its design elements
other than TrickleTimer resetting strategy. Furthermore,
‘Slow QU’ shows the worst performance among the three
QU-RPL-related ones since it cannot fast disseminate the QU
information of a congested parent node to its children nodes.
The slow update of QU makes it hard to balance traffic load
since each node changes its parent node based on inaccurate
and outdated QU information. As a result, ‘Slow QU’ repeats
meaningless parent changes again and again, which causes
the largest number of parent changes as shown in Fig. 25c.

On the other hand, ‘Fast QU’ greatly improves the PRR
performance with less parent changes than ‘Slow QU’ by
propagating real-time QU information when congestion
occurs. However, as shown in Fig. 25b, it requires the larg-
est DIO overhead due to frequent re-initialization of
TrickleTimer. Thus, this result indicates that QU-RPL
achieves the same performance as the better one of either
‘Slow QU’ or ‘Fast QU’ by re-initializing TrickleTimer with
an adaptive threshold ’ which increases when a node con-
tinuously suffers from congestion.

7.2 Probabilistic Parent Change

Fig. 26 shows the effect of probabilistic parent change mech-
anism in QU-RPL, which is designed to mitigate herding

effect. Here ‘No Prob’ selects the best alternative parent
using the same routing metric RQUðpkÞ as QU-RPL, but
changes the parent from the current one to a newly selected
one as RPL (i.e., no use of Eq. (15)).

Based on the routing metric including QU, ‘No Prob’
detects congestion and tries to resolve the problem by
changing parents and transmitting DIOs much more fre-
quently than RPL and QU-RPL, as shown in Figs. 26b and
26c. However, Fig. 26a shows that, even though ‘No Prob’
improves PRR performance compared to RPL, it still pro-
vides worse PRR than QU-RPL. This is because ‘No Prob’
allows each child node of a congested parent to be simulta-
neously attached to its best alternative parent, resulting in
repetitive and meaningless parent changes with limited per-
formance improvement.

7.3 Congestion Indicator mk

Fig. 27 shows the effect of congestion indicator mk on the
performance. Here ‘My QU’, ‘Parent QU’, and QU-RPL use
QðkÞ, QðPkÞ, and Eq. (13) as mk, respectively. First, Fig. 27a
reveals that QU-RPL and its variants outperform RPL
thanks to other design elements in QU-RPL except the con-
gestion indicator. Among the three QU-RPL-related proto-
cols, ‘My QU’ provides the worst PRR performance since
QðkÞ could be small even when a parent node of node k
experiences severe congestion (i.e., large QðPkÞ). Node k
cannot detect the congestion of its parent node with use of
QðkÞ and incurs herding effect because the condition (14) is
not satisfied. As a result, ‘My QU’ incurs the largest DIO
overhead and the largest number of parent changes, as
depicted in Figs. 27b and 27c.

‘Parent QU’ significantly improves PRR performance
over ‘My QU’ by using QðPkÞ, which means that QðPkÞ is a
more desirable congestion indicator than QðkÞ in the per-
spective of parent selection. However, ‘Parent QU’ still

Fig. 25. The effect of fast QU propagation mechanism on performance.

Fig. 26. The effect of probabilistic parent change on performance.

976 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

provides PRR performance slightly lower than QU-RPL
while incurring larger DIO overhead and more parent
changes than QU-RPL. This is because the use of QðPkÞ well
balances tree topology at first, but can make it unbalanced
again. Specifically, once the topology is balanced, QðPkÞ
becomes small, which allows node k to disable probabilistic
parent change. On the other hand, Qk;max helps node k to
memorize congestion events and maintain the probabilistic
parent change. Since QU-RPL can balance tree topology in a
more stable manner, it provides the best performance
among the three competitive schemes.

7.4 QU Adjustment

Fig. 28 shows the effect of QU adjustment considering the
QU of a parent node as Eq. (8). ‘No AQU’ is the same as
QU-RPL but does not use the QU adjustment in Eq. (8).
From the three figures, we observe that QU adjustment
slightly improves the PRR performance while reducing DIO
overhead. This is because the QU adjustment mechanism
increases QU of a node when it has a congested parent,
which allows each node to avoid selecting a node as a par-
ent, when it has a congested parent (thus avoiding con-
gested grandparent). The results confirm that QU-RPL
achieves load balancing more effectively by propagating
QU information of each node to its subtree.

7.5 Weighting Factors a and k

Lastly, we analyze the effect of the design parameters a and k

on the performance ofQU-RPL. Fig. 29 depicts the PRR given
byQU-RPLwith varying a and k. First of all, we observe that
the PRR first increases and then decreases with a. This is due
to the trade-off between congestion avoidance and routing
direction. For large a, a node mainly considers QU when
selecting its best alternative parent, and easily avoids traffic
congestion. However, it may take a path that is significantly

longer than the shortest path by ignoring hop distance infor-
mation of parent candidates. We also observe that the PRR
first increases and then decreases with k as well. This is
because, for large k, a node aggressively changes its parent to
avoid traffic congestion, which shows the trade-off between
fast load balancing and herding effect.

We conclude that these parameters do impact the perfor-
mance ofQU-RPL, and they can be empirically optimized by
observing network performance. The results show that QU-
RPL provides the best PRR performance when a ¼ 2 and
k ¼ 0:25. Therefore we have exploited these values through-
out our testbed experiments and evaluation in Section 6.

8 CONCLUSION

In this paper, we have discussed the congestion and load
balancing problem of the RPL standard. We have identified
the cases where routing concentrates on a small set of for-
warding parents resulting in packet delivery failures due to
queue overflows, and also verified our findings through
proof-of-concept implementation and testbed experiments.

Fig. 27. The effect of congestion indicator on performance.

Fig. 28. The effect of QU adjustment on performance.

Fig. 29. Average PRR with varying a and k, which shows the effect of
parameters on performance.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 977

To address this issue, we have proposed a light-weight but
effective solution, called QU-RPL, that aims to achieve load
balancing by allowing each node to select its parent node
according to the queue utilization of its neighbor nodes as
well as their hop distances to the border router. We have also
evaluated the performance of QU-RPL through extensive
experiments on a real testbed in comparison with the
TinyRPL, and proved that our proposal greatly alleviates the
packet loss problem at queues, thereby achieving significant
improvement in end-to-end packet delivery performance.

ACKNOWLEDGMENTS

An earlier version of this article appeared in the Proceedings
of the 12th IEEE International Conference on Sensing, Communi-
cation, and Networking (SECON’15), June 2015[1]. This work
was supported in part by the National Research Foundation
of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2015R1A2A2A01008240), in part by the ICT
R&D program of MSIP/IITP, Republic of Korea. [B0717-16-
0026, Research on Disaster Communication for Reliable Net-
work Configuration in a Shadow Area of a Disaster Zone],
and in part by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (NRF-2014R1A1A2056626).

REFERENCES

[1] H.-S. Kim, J. Paek, and S. Bahk, “QU-RPL: Queue utilization based
RPL for load balancing in large scale industrial Applications,” in
Proc. 12th Annu. IEEE Int. Conf. Sensing Commun. Netw., Jun. 2015,
pp. 265–273.

[2] Cisco, “Connected grid networks for smart grid—Field area
network,” San Jose, CA, USA, [Online]. Available: http://www.
cisco.com/web/strategy/energy/field_area_network.html

[3] E. Ancillotti, R. Bruno, and M. Conti, “The role of the RPL routing
protocol for smart grid communications,” IEEE Commun. Mag.,
vol. 51, no. 1, pp. 75–83, Jan. 2013.

[4] German Federal Ministry of Education and Research, “Project of
the future: Industry 4.0,” [Online]. Available: http://www.bmbf.
de/en/19955.php

[5] V. Gungor and G. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE
Trans. Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[6] J. Paek, et al., “The tenet architecture for tiered sensor networks,”
ACM Trans. Sensor Netw., vol. 6, no. 4, pp. 34:1–34:44, 2010.

[7] J. Paek, J. Hicks, S. Coe, and R. Govindan, “Image-based environ-
mental monitoring sensor application using an embedded wire-
less sensor network,” Sensors, vol. 14, no. 9, pp. 15981–16002, 2014.

[8] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk,
“MarketNet: An asymmetric transmission power-based wireless
system for managing e-price tags in markets,” in Proc. 13th ACM
Int. Conf. Embedded Networked Sensor Syst., Nov. 2015, pp. 281–294.

[9] T. Winter, et al., “RPL: IPv6 routing protocol for low-power and
lossy networks,” RFC 6550, Mar. 2012.

[10] “IEEE Standard for Information technology—Telecommunica-
tions and information exchange between systems—Local and
metropolitan area networks. Specific requirements—Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (LR-WPANs),” IEEE Standard 802.11-2007, May2003.
[Online]. Available: http://www.ieee802.org/15/pub/TG4.html

[11] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of IPv6 packets over IEEE 802.15.4 networks,”
RFC 4944, Sep. 2007.

[12] H.-S. Kim, J.-S. Bang, and Y.-H. Lee, “Distributed network config-
uration in large-scale low power wireless networks,” Comput.
Netw., vol. 70, pp. 288–301, Sep. 2014.

[13] H.-S. Kim, H. Im, M.-S. Lee, J. Paek, and S. Bahk, “A measurement
study of TCP over RPL in low-power and lossy networks,”
J. Commun. Netw., vol. 17, no. 6, pp. 647–655, Dec. 2015.

[14] S. Bahk and M. E. Zarki, “Dynamic multi-path routing and how it
compares with other dynamic routing algorithms for high speed
wide area network,” in Proc. Conf. Commun. ACM SIGCOMM,
Aug. 1992, pp. 53–64.

[15] P. Thubert, “Objective function zero for the routing protocol for
low-power and lossy networks (RPL),” RFC 6552, Mar. 2012.

[16] D. Wang, Z. Tao, J. Zhang, and A. Abouzeid, “RPL based routing
for advanced metering infrastructure in smart grid,” in Proc. IEEE
Int. Conf. Commun. Workshops, May 2010, pp. 1–6.

[17] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, and A. Terzis,
“Evaluating the performance of RPL and 6LoWPAN in TinyOS,” in
Proc.Workshop Extending Internet LowPower LossyNetw., Apr. 2011.

[18] T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of
the IPv6 routing protocol for low power and lossy networks
(RPL),” in Proc. IEEE Int. Conf. Wireless Mobile Comput. Netw. Com-
mun., Oct. 2011, pp. 365–372.

[19] U. Herberg and T. Clausen, “A comparative performance study of
the routing protocols load and RPLwith bi-directional traffic in low-
power and lossy networks,” in Proc. 8th ACM Symp. Performance
EvaluationWireless AdHoc SensorUbiquitous Netw., 2011, pp. 73–80.

[20] N. Accettura, L. Grieco, G. Boggia, and P. Camarda, “Performance
analysis of the RPL routing protocol,” in IEEE Int. Conf. Mecha-
tronics, Apr. 2011, pp. 767–772.

[21] H. Kermajani and C. Gomez, “On the network convergence pro-
cess in RPL over IEEE 802.15.4 multihop networks: Improvement
and trade-offs,” Sensors, vol. 14, no. 7, pp. 11993–12022, 2014.

[22] J. Ko, J. Jeong, J. Park, J. A. Jun, O. Gnawali, and J. Paek,
“DualMOP-RPL: Supporting multiple modes of downward rout-
ing in a single RPL network,” ACM Trans. Sensor Netw., vol. 11,
no. 2, pp. 39:1–39:20, Mar. 2015.

[23] O. Gnawali and P. Levis, “The minimum rank with hysteresis
objective function,” RFC 6719, Sep. 2012.

[24] O. Gnawali and P. Levis, “The ETX objective function for RPL,”
draft-gnawali-roll-etxof-01, May2010.

[25] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing
metrics used for path calculation in low-power and lossy
networks,” RFC 6551, Mar. 2012.

[26] O. Gaddour, A. Koubaa, N. Baccour, and M. Abid, “OF-FL: QoS-
aware fuzzy logic objective function for the RPL routing proto-
col,” in Proc. 12th Int. Symp. Modeling Optimization Mobile Ad Hoc
Wireless Netw., May 2014, pp. 365–372.

[27] P. Karkazis, et al., “Design of primary and composite routing
metrics for RPL-compliant wireless sensor networks,” in Proc. Int.
Conf. Telecommun. Multimedia, Jul. 2012, pp. 13–18.

[28] A. Brachman, “RPL objective function impact on LLNs topology
and performance,” in Internet of Things, Smart Spaces, and Next Gen-
eration Networking, S. Balandin, S. Andreev, and Y. Koucheryavy,
eds. Berlin, Germany: Springer, 2013, vol. 8121, pp. 340–351.

[29] P. Gonizzi, R. Monica, and G. Ferrari, “Design and evaluation of a
delay-efficient RPL routing metric,” in Proc. 9th Int. Conf. Wireless
Commun. Mobile Comput., Jul. 2013, pp. 1573–1577.

[30] P. Di Marco, C. Fischione, G. Athanasiou, and P.-V. Mekikis,
“Mac-aware routing metrics for low power and lossy networks,” in
Proc. IEEE Conf. Comput. Commun.Workshops, Apr. 2013, pp. 79–80.

[31] J. Ko, et al., “Beyond interoperability: Pushing the performance of
Ssensor network IP stacks,” in Proc. 9th ACM Conf. Embedded Net-
worked Sensor Syst., 2011, pp. 1–11.

[32] M. Ha, K. Kwon, D. Kim, and P.-Y. Kong, “Dynamic and distrib-
uted load balancing scheme in multi-gateway based 6LoWPAN,”
in Proc. IEEE Int. Conf. Internet of Things, Oct. 2014, pp. 87–94.

[33] X. Liu, J. Guo, G. Bhatti, P. Orlik, and K. Parsons, “Load balanced
routing for low power and lossy networks,” in Proc. IEEE Wireless
Commun. Netw. Conf., Apr. 2013, pp. 2238–2243.

[34] Y. Zhu, et al., “On deploying relays for connectd indoor sensor
networks,” J. Commun. Netw., vol. 16, no. 3, pp. 335–343, Jun. 2014.

[35] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sensor
Netw., 2005, Art. no. 18.

[36] D. Moss, J. Hui, and K. Klues, “Low power listening,” TinyOS TEP
105, http://www.btnode.ethz.ch/static_docs/tinyos-2.x/html/
tep105.html

[37] K. T. Cho and S. Bahk, “Duty cycle optimization for a multi hop
transmission method in wireless sensor networks,” IEEE Commun.
Lett., vol. 14, no. 3, pp. 269–271, Mar. 2010.

[38] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks,” in Proc. 1st Conf. Symp. Networked Syst.
Design Implementation Vol. 1, 2004, pp. 2–2.

978 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL 2017

Hyung-Sin Kim received the BS degree from
Seoul National University (SNU), Seoul, Korea,
in 2009, the MS degree from SNU in 2011,
and the PhD degree from SNU in 2016, all in
electrical engineering. He is currently working
as a postdoctoral researcher in the Network
Laboratory (NETLAB) at SNU. His research
interests include wireless IoT systems for
urban marketplaces and Smart Grid, and net-
work and communication protocols for low
power wireless systems.

Hongchan Kim received the BS degree in electri-
cal and computer engineering fromSeoul National
University (SNU) in 2015. He is currently working
toward the master’s degree in the Network Labo-
ratory (NETLAB) at SNU. His research interests
include designing routing protocols for low-power
networks and constructingmobile IoT systems.

Jeongyeup Paek received the BS degree from
Seoul National University in 2003, the MS degree
from the University of Southern California in
2005, both in electrical engineering, and the PhD
degree in computer science from the University
of Southern California in 2010. He worked at
Deutsche Telekom Inc. R&D Labs USA as a
research intern in 2010, then joined Cisco Sys-
tems Inc. in 2011 where he was a technical
leader in the Internet of Things Group, Smart
Grid business unit. He is currently an assistant

professor at the School of Computer Science and Engineering, Chung-
Ang University, Korea.

Saewoong Bahk received the BS and MS
degrees in electrical engineering from Seoul
National University (SNU) in 1984 and 1986,
respectively, and the PhD degree from the Univer-
sity of Pennsylvania in 1991. He is a professor at
Seoul National University. He served as director
for the Institute of New Media and Communica-
tions during 2009-2011. Prior to joining SNU, he
was with AT&T Bell Laboratories as a member of
technical staff from 1991 to 1994 where he had
worked on network management. He received the

KICS Haedong Scholar Award in 2012. He has been leading many indus-
trial projects on 3G/4G/5G and IoT connectivity supported by Samsung
Electronics, LG Electronics, SK Telecom, etc., and published more than
200 technical papers and holds 72 patents. He was TPC Chair for IEEE
VTC-Spring 2014 and general chair of JCCI 2015. He is co-EIC of
the IEEE/KICS Journal of Communications and Networks, and was
on the editorial board for the Computer Networks Journal and the
IEEE Transactions on Wireless Communications . He is an IEEE
senior member and a member of Whos Who Professional in Science
and Engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIM ET AL.: LOAD BALANCING UNDER HEAVY TRAFFIC IN RPL ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS 979

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

