
César: Cellular Resource Scheduling-Aware
Congestion Control

Juhun Shin∗, Goodsol Lee∗, Jeongyeup Paek†, Saewoong Bahk∗

∗Department of Electrical and Computer Engineering and INMC, Seoul National University, Seoul, Republic of Korea
†Department of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

jhshin@netlab.snu.ac.kr, gslee2@netlab.snu.ac.kr, jpaek@cau.ac.kr, sbahk@snu.ac.kr

Abstract—Delay-based congestion control algorithms (CCAs)
have been proposed to tackle the bufferbloat problem of tra-
ditional loss-based CCAs. However, existing delay-based CCAs
either fail to adequately consider the non-congestive delay caused
by scheduling characteristics of modern cellular networks leading
to improper congestion control, or face practical deployment
issues, which results in an inability to fully utilize the high
bandwidth and low latency that recent cellular systems provide.
To resolve this problem, we propose César, a cellular resource
scheduling-aware congestion control with only sender-side mod-
ification. César estimates scheduling unit through TCP ACK
interval patterns to deduce the scheduling characteristics of the
current cellular link, and adjusts the congestion window size
based on scheduling unit in a step-wise manner to minimize
the impact of the scheduling delay on congestion control. Ex-
perimental results on 5G and LTE cellular networks of three
different mobile carriers show that César outperforms other
state-of-the-art CCAs. Results show that throughput-over-latency
performance improves by up to 2.89×, 10.09×, 1.39×, and 5.65×
compared to ExLL, PropRate, BBR, and Cubic, respectively.

Index Terms—Congestion control, cellular, transport protocol

I. INTRODUCTION

Cellular communication has been advancing dramatically
to simultaneously satisfy the high bandwidth and low latency
requirements of emerging real-time mobile applications such
as VR/AR, 360-degree video, and cloud gaming [1–3]. Despite
these advancements, however, loss-based congestion control
algorithms (CCAs) such as Cubic [4] fail to ensure low latency
due to the bufferbloat [5] problem; pushing packets until the
deep buffers at the cellular base station (BS) [6] are completely
filled and packets are lost, resulting in long delays [7, 8].
To overcome this problem, delay-based CCAs that use delay
information (e.g., round trip time (RTT) [9], jitter [10]) instead
of packet loss for congestion control have been proposed.

Delay-based CCAs [9, 11] can simultaneously achieve high
bandwidth and low latency in an environment free from non-
congestive delays (e.g., wired network). However, cellular net-
works inevitably have time-varying non-congestive scheduling
delays due to their wireless resource allocation and scheduling
mechanisms. These scheduling delays result in contamination
of RTT information, misleading delay-based CCAs to adjust

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. IITP-2025-RS-2024-00398157 & No. IITP-2025-RS-2024-
00405128 & No. IITP-2025-RS-2024-00418784).

40 60 80 100 120 140 160 180 200
RTT (ms)

0

100

200

300

400

Tp
ut

 (M
bi

t/s
) Cubic

BBR
ExLL
PropRate
Manually Set
Vegas
Copa

Fig. 1: Average throughput, average RTT, and 95th percentile RTT
of different CCAs over a commercial 5G network. ‘Manually Set’
CCA manually sets the cwnd around the known BDP.

the congestion window size (cwnd) in an unintended and
inappropriate manner such as reducing the cwnd even though
there is no congestion. As a result, delay-based CCAs fail
to simultaneously achieve high link utilization and low la-
tency over cellular networks, even in relatively stable wireless
conditions. To observe this, we compare the performances of
various CCAs on a commercial 5G network (Fig. 1). While
Copa [9] and Vegas [12] achieve low latency, they exhibit
significantly lower bandwidth utilization compared to other
CCAs. BBR also fails to fully utilize the bandwidth. High
bandwidth utilization is achieved only when the cwnd is
manually set and fixed close to the BDP.

In response to the limitations of delay-based CCAs in
cellular networks, researchers have proposed various end-to-
end and in-network CCAs. However, as shown in Fig. 1, even
the end-to-end CCAs specifically designed for low latency
on cellular networks (ExLL [13], PropRate [14]) fail to
achieve high bandwidth utilization. This is because end-to-end
CCAs [13–16] do not sufficiently account for the scheduling
characteristics of cellular networks. Furthermore, cross-layer
CCAs [17, 18] or in-network CCAs [19] encounter practical
deployment issues or require additional deployment costs such
as the need to modify the cellular BS or devices of all users.

To address this problem, we propose César, an end-to-
end cellular resource scheduling-aware congestion control
scheme with only sender-side modification. Unlike other
scheduling-agnostic CCAs, César is designed specifically with
the scheduling characteristics of cellular links in mind to
minimize the impact of scheduling delays on cwnd adjust-

ment. César defines scheduling unit as the minimum time
difference between the sets of uplink and downlink resources.
Based on the fact that scheduling unit correlates with the
intervals between TCP ACKs at the sender (end-host), César
estimates scheduling unit at the end host, bypassing the need
for low-layer information. Then, César utilizes the estimated
scheduling unit and the understanding of cellular scheduling to
adjust cwnd in a step-wise manner. The step-wise approach is
designed to minimize the impact of scheduling delays, which
fluctuate over time, on cwnd control.

We implement César in the Linux Kernel on an Amazon
Web Service (AWS) cloud server (only sender-side modi-
fication), and conduct experiments on commercial cellular
networks (for both LTE and 5G) for three different mobile
carriers. Results demonstrate that César outperforms other
delay-based CCAs in achieving both high throughput and low
latency across all mobile carriers and networks. César achieves
up to 2.89×, 10.09×, 1.39×, and 5.65× throughput-over-
latency performance compared to ExLL, PropRate, BBR, and
Cubic, respectively.

The contributions of this work are as follows:
• We investigate how cellular scheduling impacts the delay-

based CCAs on multiple commercial networks and analyze
the underlying causes.

• We design César to fully utilize the high bandwidth and low
latency over cellular using novel scheduling unit and step-
wise cwnd adjustment with only sender-side modification.

• We implement César and evaluate it on commercial cellular
networks to show a remarkable improvement in bandwidth
utilization and low latency performance.

II. BACKGROUND

We first provide a brief background on cellular link schedul-
ing, network delay components, and delay-based CCA.

A. Cellular Link Scheduling
Cellular systems allocate wireless resources to user equip-

ment (UE) based on slot units (typically 0.5 ms) [20]. For
downlink, the BS schedules resources for multiple UEs every
transmission time interval (typically 1 ms) based on the sig-
nal strength reported by each UE. For uplink, a UE sends
a scheduling request (SR) to the BS to obtain the uplink
scheduling grant. The BS then allocates uplink resources based
on the SR. In LTE systems, SR periodicity, which is the period
for the UE to send SRs, is typically selected from 5, 10, 20,
40, or 80 ms [21]. 5G system can use various slot lengths (e.g.,
0.25 ms, 0.125 ms) and offer faster SR periodicity for shorter
slot lengths [22]. Based on these basic mechanisms, the BS
schedules wireless resources to optimize the performance in
terms of spectral efficiency and fairness [23].

B. Network Delay Components
Delay (or RTT) of a packet consists of three components:

propagation delay, congestive delay, and non-congestive de-
lay [24]1. Based on this classification, we tailor the definitions

1Definition and categorization of delay components may vary depending
on the perspective and purpose, and we refer to [24].

Decrease cwnd

RTT Sample

Propagation delay + Congestive delay

Amount inflight

R
AT

E
R

T
T

Bandwidth
underutilized Bandwidth fully utilized

BDP BDP + bottleneck queue size

(a) Non-congestive delay does not exist

RTT Sample

Decrease cwnd
Propagation delay
+ Congestive delay

Non-congestive delay
at a specific time +

Amount inflight

R
AT

E

Bandwidth
underutilized Bandwidth fully utilized

R
T

T

BDP BDP + bottleneck queue size

(b) Time-varying non-congestive (scheduling) delay exists

Fig. 2: Delivery rate and RTT for the amount of inflight when (a)
non-congestive delay does not exist, (b) time-varying non-congestive
(scheduling) delay exists. Delay-based CCA in this example de-
creases the cwnd when RTT exceeds the minimum RTT.

of each component for cellular networks.
• Propagation delay is the inevitable minimum delay at non-

bottleneck links, which is the sum of transmission delays
across non-bottleneck links and the speed-of-signal delay
from the sender to the receiver along the end-to-end path.

• Congestive delay is the sum of the time a packet spends in
the bottleneck queue when wireless resources are available
and the transmission time over the bottleneck link.

• Non-congestive delay is the additional delay caused by
network elements irrelevant to congestion (i.e. neither band-
width nor queue). For example, this includes the time a
packet is held due to cellular link scheduling, processing at
the BS, delayed ACKs, etc.

The delay occurring when a packet is in the bottleneck link’s
queue without available wireless resources should not be
interpreted as congestive delay because this delay is merely
caused by not receiving resources due to cellular scheduling
mechanism [25]. We refer to this non-congestive delay as
scheduling delay.

C. Delay-based Congestion Control

Delay-based CCAs aim to adjust the cwnd to the optimal
bandwidth-delay product (BDP) point where RTT is mini-
mized and delivery rate is maximized using delay information
(typically RTT increase) instead of loss [9, 12–16]. Most
delay-based CCAs rely on the fact that RTT remains equal to
the propagation delay (minimum RTT) and does not increase
until the bandwidth is fully utilized as in Fig. 2a. Once the
cwnd increases beyond fully utilizing the bandwidth, the
queue builds up, causing an RTT increase. Delay-based CCAs
use this RTT increase to estimate the congestive delay. For
example, as depicted in Fig. 2a, delay-based CCAs decrease
the cwnd when an RTT sample exceeds the minimum RTT,

interpreting this as congestive delay and the current cwnd
being larger than the BDP.

Additionally, TCP congestion control can use pacing [26]
to improve performance. Even in networks with the same
BDP, bursty traffic can cause more frequent packet losses and
higher queuing delays. To mitigate this problem, the pacing
smoothens TCP traffic by evenly spacing (adding intentional
delays to) bursty data transmissions.

III. MOTIVATION AND RELATED WORK

We explain why TCP should care about link layer schedul-
ing delays, and show that existing CCAs even for cellular
networks do not adequately consider scheduling delays.

A. Why should TCP consider the scheduling delay?

Scheduling delay is inevitable in today’s cellular systems.
Current cellular technology focuses on spectral efficiency to
optimize link throughput with limited wireless resources [23].
To maximize spectral efficiency, the BS allocates resources to
UEs with relatively good channel conditions. This means that
a UE may not receive downlink resources consistently, but
rather in bursts due to fluctuating channel quality2. Therefore,
downlink packets for a UE may not be sent immediately upon
arrival at the BS, but instead experience scheduling delay,
unrelated to congestion, while waiting for downlink resources.
This downlink scheduling delay is not constant but varies over
time as the channel condition of UE and the status of BS
changes. Furthermore, after receiving a downlink TCP packet,
the UE cannot send the TCP ACK immediately but must wait
for the BS to grant the uplink schedule. While waiting for the
uplink schedule, the UE accumulates TCP ACKs and sends
them in a batch when the uplink resource is granted, resulting
in delays and bursty traffic.

Fig. 3 plots the RTT samples at the sender (end-host) when
cwnd is fixed to be sufficiently below the known BDP. Uplink
scheduling generates a discrete line-like pattern because TCP
ACKs for packets that left the downlink queue earlier wait
for uplink resources on the UE side, aligning their processing
with TCP ACKs for later-departing downlink packets. Thus,
the packets for which TCP ACKs are sent using the same
uplink resource on the UE side appear to have the same RTT
at the sender (end-host) due to the alignment at the uplink,
resulting in a discrete line-like RTT pattern instead of random-
looking continuous values. Furthermore, downlink scheduling
results in downlink packets waiting at the BS until downlink
resources are allocated to the UE regardless of congestion.
Thus, even when cwnd is sufficiently below the BDP, RTT
samples higher than the minimum are observed. Consequently,
the combination of uplink scheduling, which discretizes RTT,
and downlink scheduling, which increases RTT beyond the
minimum RTT, leads to a multiple line-like RTT pattern.

2This occurs in short-term scale. The BS considers fairness as well as
spectral efficiency, thus even the UEs with relatively poor channel conditions
will receive resources in long-term scale.

0 500 1000 1500 2000
Packet Number

20

40

60

80

RT
T

(m
s)

RTT Sample
Minimum RTT

Fig. 3: RTT samples over a commercial cellular network when cwnd
is fixed to utilize approximately 100 Mbps out of 550 Mbps. cwnd
is fixed to reduce the effects of congestion control and better observe
the RTT characteristics of the cellular link.

These time-varying scheduling delays cause the RTT to
exceed the minimum even when there is no congestion. Delay-
based CCAs misinterpret these RTT increases as congestive
delays, and improperly reduce cwnd even when there is no
queueing and the current cwnd is smaller than the BDP,
thus resulting in bandwidth under-utilization. For example in
Fig. 2b, delay-based CCAs that are agnostic to scheduling
delays observe the RTT sample that exceeds the minimum RTT
and determine that the current cwnd is larger than the BDP as
in Fig. 2a. This leads to the decision to decrease cwnd, result-
ing in an even lower bandwidth under-utilization. Additionally,
if temporarily increased scheduling delay decreases due to its
time-varying nature, delay-based CCA can misinterpret this as
improved network conditions, leading to an improper increase
in cwnd to probe the maximum bandwidth. This increase
results in queuing and subsequent increases in latency.

B. Limitation of Existing Works

Various CCAs have been proposed to improve TCP per-
formance over cellular, but they fail to adequately consider
the scheduling or face practical deployment issues, preventing
UEs from fully achieving high bandwidth and low latency.

Some delay-based CCAs, such as Verus [15], C2TCP [16],
Copa [9], and BBR [11] use the max/min RTT or estimated
bandwidth within a certain window for congestion control.
However, this window-based approach cannot accurately re-
flect the status of cellular links. Due to the time-varying
nature of scheduling delay, the max/min RTT within a win-
dow changes over time, even in the absence of congestion.
Estimated bandwidth within a window varies depending on
how many times bursty scheduling occurs within that window,
even if the bottleneck bandwidth remains the same [25].
Additionally, BS parameters and scheduling methods can vary
not only between mobile carriers, but also by region and
between LTE and 5G even within the same mobile carrier.
This leads to diverse scheduling delay patterns, making it
difficult to determine a window size that accommodates all
these variations.

There are CCAs that use delay information directly to
infer current congestion status. However, these methods are
effective only if the scheduling delay is constant and an
increase in RTT indicates queuing. Verus [15] uses the re-
lationship between RTT and cwnd, but fails to accurately

BS UEServer

TCP
ACKs

TCP
packets

Spacing

Transport Layer

§IV-C. Scheduling Unit Estimation
and Packet Selection

CWND

§IV-D. Pacing Rate
Control

§IV-E. Step-wise Congestion
Window Control

Fig. 4: Overview of César design.

reflect network conditions as scheduling delay varies over
time. ExLL [13] considers the uplink SR period but neglects
the burst characteristics of downlink, leading to an under-
estimation of scheduling delay. PropRate [14] and Copa [9]
adjust cwnd based on whether RTT exceeds a certain thresh-
old, but RTT can surpass the threshold regardless of actual
network conditions due to time-varying scheduling delays.

There are CCAs that adjust cwnd based on lower- or
higher-layer information [17, 18, 27, 28]. For example,
CLAW [17] utilizes physical layer information (e.g., RSSI,
RSRP), whereas PBE-CC [18] estimates available bandwidth
by analyzing control messages. This information is delivered
to the sender for cwnd adjustment. There are also CCAs (e.g.,
ABC [19], XCP [29]) that use explicit congestion notification
(ECN) to provide improved performance compared to end-to-
end methods. However, employing such schemes for cellular
networks requires modifications to the BS, sender, and UE
sides. Modifying the BS and adapting the sender code accord-
ingly, across all mobile carriers, makes large-scale deployment
impractical.

IV. CÉSAR DESIGN

We propose César, a cellular resource scheduling-aware
CCA to achieve high throughput and low latency over cellular.

A. Overview

The overall structure of César is shown in Fig. 4. César
estimates scheduling unit to represent the burst scheduling
characteristics of the current cellular link through the TCP
ACK interval pattern. If the ACK intervals do not appear to
have a cellular-specific line-like pattern as in Fig. 3, César
determines that the bottleneck is not at the cellular link
and applies BBR [11] congestion control3. Using estimated
scheduling unit, César selects the packet that is least affected
by scheduling (§IV-C), and adjusts the cwnd in a step-wise
manner to minimize the impact of scheduling delays (§IV-E).
Furthermore, César controls the pacing rate to smooth out the
traffic (§IV-D).

B. ‘Scheduling Unit’ Definition

Scheduling unit represents the bursty scheduling characteris-
tic, and is defined as follows: the minimum end-time difference

3We choose BBR because it is known to generally have good performance
in wired networks [30].

c.

Time

Resource
allocation
for the UE

Scheduling Unit (2.5ms)

b.
Set i Set j

c.b.

BS
a. Packet arrives

at the BS UEServer
b. Packet is delivered

from BS to UE

c. ACK is delivered
from UE to BS

Packet i and
corresponding ACK

Packet j and
corresponding ACK

Other Packets and
corresponding ACKs

1 slot (0.5ms) Downlink schedule Uplink schedule

A
C
K

A
C
K

a.

2 3 4 5 6 7 8 9 10 11 12 131

Fig. 5: An example of resource allocation for one UE and end-to-
end TCP data/ACK packet delivery process in cellular networks.

between the sets of uplink and downlink resources.
From an end-to-end perspective, downlink and uplink re-

sources can be considered to be processed in batches, or
in sets, due to the aligning characteristics of the uplink
mechanism. For instance, in Fig. 5, all packets allocated to
the downlink resources in slots 5 and 6 share the same uplink
resource in slot 8. These packets can be considered as one
set because, from the perspective of the sender (end-host), it
appears as if the TCP ACKs of set i are processed as a single
batch and arrive all at once. In the same manner, the packets in
set j also share the same set of downlink and uplink resources.

The end-time difference between two consecutive sets dis-
plays a bursty scheduling pattern. If a BS allocates downlink
resources to a UE in a bursty manner every 10 ms, the end-
time difference will be 10 ms. The bursty scheduling pattern
is determined by which of the various BS parameters has a
significant impact, such as uplink SR period, uplink-downlink
switch time in case of time division duplexing (TDD), and
vendor-specific scheduling rules [25]. In Fig. 5, uplink SR
period (2.5 ms) has a significant impact, so bursty pattern (a
set) occurs every 2.5 ms. But, if the BS employs TDD and
the uplink-downlink switch time is 5 ms, scheduling follows
a pattern of 5 ms. Or if the vendor has configured the BS to
avoid allocating resources to the recently allocated UE for the
next 10 ms for fairness, bursty scheduling will occur every
10 ms. The crucial point is that, regardless of the cause, the
inherent nature of cellular systems inevitably leads to bursty
scheduling patterns.

The end-time differences between sets can vary. For exam-
ple, downlink resources may not be allocated depending on
UE channel conditions or BS status as previously mentioned
in §III-A. In Fig. 5, if the downlink resources in slots 5 and 6
are not assigned due to poor UE channel conditions, the time
difference will be doubled, skipping one set. Therefore, we
estimate the minimum time difference to deduce the bursty
scheduling characteristic.

C. Scheduling Unit Estimation and Packet Selection

We identified that scheduling unit correlates with the inter-
vals between consecutive TCP ACKs at the sender. The sender

0 500 1000 1500 2000 2500
Packet Number

0

10

20
A

C
K

 In
te

rv
al

 (m
s)

Interval sample
Estimated scheduling unit

(a) SKT LTE network

0 500 1000 1500 2000 2500
Packet Number

0

10

20

A
C

K
 In

te
rv

al
 (m

s)

Interval sample
Estimated scheduling unit

(b) KT LTE network

0 500 1000 1500 2000 2500
Packet Number

0

10

20

A
C

K
 In

te
rv

al
 (m

s)

Interval sample
Estimated scheduling unit

(c) LGU+ LTE network

0 500 1000 1500 2000 2500
Packet Number

0

10

20

A
C

K
 In

te
rv

al
 (m

s)

Interval sample
Estimated scheduling unit

(d) SKT 5G network

0 500 1000 1500 2000 2500
Packet Number

0

10

20

A
C

K
 In

te
rv

al
 (m

s)

Interval sample
Estimated scheduling unit

(e) KT 5G network

0 500 1000 1500 2000 2500
Packet Number

0

5

10

15

A
C

K
 In

te
rv

al
 (m

s)

Interval sample
Estimated scheduling unit

(f) LGU+ 5G network

Fig. 6: Interval samples (blue dots) between consecutive TCP ACKs and estimated scheduling unit (green line) at the sender (end-host)
over commercial LTE and 5G networks provided by three mobile carriers.

receives ACKs in batches because packets are usually pro-
cessed by the BS in sets in a bursty manner. Therefore, the end-
time difference between sets can be estimated by comparing
the arrival time intervals between consecutive ACKs. Fig. 6 are
example plots of these measured intervals. Many intervals are
distributed near 0 ms due to bursty ACKs. As shown in Fig. 6a
and Fig. 6d, if the BS has a 5 ms scheduling pattern (due to
5 ms SR period), the interval patterns are multiples of 5 ms.
Intervals outside 5 ms patterns occur possibly due to changes
in propagation delays, delays in non-bottleneck links, or the
UE/BS processing, which are relatively less dominant. By
gathering ACK interval samples, César estimates scheduling
unit as the smallest least common multiple of the ACK
interval pattern that frequently appears, not including those
near 0 ms. If the ACK pattern does not appear in bursts (not
multiple lines), César determines that the bottleneck is not
the cellular link. In this way, César can identify the bottleneck
without additional information. Scheduling unit may vary over
time due to vendor’s scheduling rules (e.g., dependent on
number of users). Therefore, César measures ACK intervals
and estimates scheduling unit continuously. Fig. 6e shows
that César effectively adapts to the changing pattern. Further
details will be discussed in the evaluation section (§V-B).

Based on the estimated scheduling unit, César can deter-
mine when each set starts and ends. If the ACK interval
exceeds scheduling unit or is almost the same, it indicates that
all bursty ACKs from the current set have been received, and
ACKs from the next set have started to arrive. On the other
hand, if the ACK interval is near 0 ms, it implies that ACKs
from the current set are yet to be received. For example, in
Fig. 7 where scheduling unit is 5 ms, we infer that the next
set has begun at the point where the ACK timestamp increases
by 5 ms. To distinguish sets more accurately, César determines
that a set ends if more than scheduling unit time has elapsed
since the arrival of the first ACK in a group of bursty ACKs.

César selects the last packet in each set as the anchor
packet for congestion and pacing rate control because it is
the least affected by scheduling. RTT may include waiting
time for uplink scheduling which contaminates the RTT from

a.

…

b. Set n

UL DL DL DL DL DL UL

c.b.
A
C
K

A
C
KResource

allocation
for the UE

RT
T

(m
s)

A
C

K
 R

ec
ei

ve
d

Ti
m

es
ta

m
p

(m
s)

Packet Number

Same set packets RTT sample ACK Received
Timestamp

Packet i Packet j

Fig. 7: Collected RTT samples and received timestamps at the server
using a commercial cellular network, along with an example of their
resource allocation (same network topology and legend as Fig. 5).
Packet i and j share the same set n, and SR period is 5 ms.

a congestion control perspective. In this situation, the last
packet of each set experiences the shortest wait time for
uplink among the packets in each set. In Fig. 7, packet i
is the first packet in set n, and packet j is the last which
is the anchor packet of set n. Packet i is served in the first
downlink and waits the longest for uplink, whereas packet
j is served in the final downlink slot and waits the shortest
time for uplink. Also, the departure times of TCP packets
from the sender (end-host) are delayed because César uses
pacing. However, the arrival times of ACKs are aligned by
the uplink. Thus, listing the RTTs of packets in set n shows a
gradually decreasing trend as shown in Fig. 7. This decreasing
trend occurs purely due to scheduling, and does not indicate an
improvement in network congestion. Thus, the anchor packet
prevents misinterpretation of temporary RTT decreases caused
by scheduling as improvements in network conditions.

D. Pacing Rate Control

Pacing can be used to improve performance in cellular
networks. If the sender transmits packets in a burst that
exceeds the capacity of a set, it will cause large delays as the
packets wait for the next set. By using pacing appropriately,
packets can arrive at the BS in accordance with the downlink
resources, reducing scheduling delays.

Step-wise control

R
T

T

Time

Non step-wise control

Decrease

Decrease
Decrease

Decrease
Decrease

Decrease
Decrease

C
W

N
D

R
T

T

Time
RTT sample
Extent of decrease

Decision Criteria
Extent of increase

Increase Increase

BDP

Increase

Fig. 8: Difference between step-wise and non step-wise control when
RTT increase is purely caused by scheduling delay.

César estimates bandwidth based on anchor packets. The
estimated bandwidth for packet i (BWi) is calculated as,

BWi =
Deliveredi

RTTi
. (1)

where RTTi denotes RTT of packet i, and Deliveredi is the
total number of packets delivered during RTTi. To smooth
the short-term fluctuation, César utilizes the exponentially
weighted moving average (ewma) of BWi to estimate cellular
bandwidth as follows,

BWewma
i = (1− γ)× BWewma

i−1 + γ × BWi. (2)

where BWewma
i is the ewma bandwidth and 0<γ<1.

However, using this ewma bandwidth directly as the pacing
rate is insufficient because we must not only operate effectively
according to the current bandwidth but also harness the
available high bandwidth. Therefore, César sets the pacing
rate to be greater than the ewma bandwidth while considering
RTT, as shown in the following equations.

Pacingi = α× ρi × BWewma
i . (3)

ρi = 1 +
1− α

α
× RTTi − RTTmin

RTTi
. (4)

Pacingi denotes the calculated pacing rate using packet i, and
the unit is packets per time (e.g., packet/ms). The spacing
between packets is the inverse of the pacing rate. α is a
parameter that determines how aggressively to increase the
pacing rate to fully utilize the bandwidth (α>1), and RTTmin

denotes minimum RTT. ρi is a penalty factor against RTT
increase. When the RTT of packet i gets closer to RTTmin,
ρi approaches its maximum of 1. Thus, as the pacing rate
increases, packets are sent with shorter intervals, increasing
bandwidth utilization. On the other hand, as RTT increases,
ρi approaches its minimum of 1/α, causing packets to be
sent with longer intervals. This results in draining queue or
responding to scheduling delay increase. The reason for using
RTT value itself, which includes scheduling delay, is that the
pacing rate can mitigate burstiness in packet transmission,
thereby alleviating scheduling delays.

E. Step-wise Congestion Window Control

By step-wise control, we mean changing the decision cri-
teria for adjusting cwnd (e.g., previous RTT) at every step
(see Fig. 8). Non step-wise control, commonly used in existing

Time

N N N N C C N P P P
Packet i’s delay
components

P N N N C C N N N C C N P
Same delay components

Packet j’s delay
components

P Propagation delay C Congestive delayN Non-congestive delay

a. c.

Resource
allocation
for the UE

b.
Set i Set j

2 3 4 5 6 7 8 9 10 11 12 131

c.b.
A
C
K

A
C
K

Fig. 9: An example of resource allocation for one UE and delay
components according to §II-B (same network topology and legend
as Fig. 5). The RTT of packet j is larger than that of packet i.

CCAs, decides to decrease the cwnd when the RTT exceeds
fixed criteria (e.g., RTTmin). This leads to improper congestion
control as described in §III-A, failing to set the cwnd closer
to the BDP. On the other hand, step-wise control utilizes the
time-varying nature of scheduling delay by reducing cwnd
when scheduling delay increases, aligning decision criteria
with scheduling delay, and compensating cwnd when schedul-
ing delay decreases. By changing the decision criteria in
a step-wise manner, the impact of RTT fluctuations caused
by scheduling can be minimized. However, this method is
more susceptible to queuing delay compared to non-step-wise
approach. César effectively utilizes the RTT value itself and
bandwidth estimation to suppress the increase in queuing delay
while leveraging the advantages of step-wise control.

The control equation of César is based on that of FAST [31].
César decreases cwnd when the current RTT exceeds the
previous RTT (of anchor packets) as follows:

cwndi = (1− β)× cwndi−1

+ β × cwndi−1 ×
(

RTTmin

RTTmin + CDi + BRi

)
(5)

CDi = (RTTi − RTTi−1)×
BWset

i

BWi
(6)

BRi = (RTTi − RTTmin)×
max(0, BWewma

i − BWi)

BWewma
i

(7)

cwndi, CDi, and BRi denote cwnd when receiving packet
i, inferred congestive delay, and penalty term for bandwidth
reduction. BWset

i is the estimated set bandwidth, calculated
as the total number of delivered packets in set i divided by
the duration of set i. β is a parameter that determines how
sensitively cwnd responds to the RTT increase (0<β<1).

CDi grows with larger RTT increases and larger BWset
i

compared to BWi. BWset
i / BWi term provides a hint about the

cause of the RTT increase. As shown in Fig. 9, when there is
an RTT increase between packets i and j, ACKs of packet
i and j arrive at the sender through different sets. In this
situation, both packets i and j are in the bottleneck queue
after both packets arrive at the BS (slot 2) and share the same
process until packet i receives its uplink resource (slot 8). So,
they share the same delay components in slots 2-7 as shown in
Fig. 9. Then, the cause of packet j’s RTT increase compared to
packet i is determined by the type of the delay component in

set j4. If BWset
j is close to or larger than the recently estimated

short-term bandwidth (BWj), it indicates that the BS allocated
sufficient downlink resources to the UE, resulting in the delay
component in set j being predominantly congestive delay
rather than scheduling delay as Fig. 9. Conversely, if BWset

j

is smaller than BWj , it can be divided into two scenarios: the
first scenario where the BS allocates fewer downlink resources
to the UE, leading to scheduling delay predominance; and the
second scenario where the bottleneck bandwidth decreases. In
the first scenario, as the CDj decreases, it results in a correct
operation that reduces the impact on scheduling delays. To
address the second scenario, César adds the penalty term for
bandwidth reduction (BR). BRj increases when BWj decreases
below the long-term estimated bandwidth BWewma

j , indicating
a reduction in bottleneck bandwidth, and increases further as
RTTj becomes larger compared to RTTmin to quickly respond
to bandwidth reduction.

If the current RTT is smaller than or equal to the previous
RTT, César increases the cwnd using the following equation:

ui = cwndi−1 + BWewma
i × SU × ρi ×

(
RTTi−1 − RTTi

RTTi−1 − RTTmin

)
(8)

ri = (1− β)× ui + β × ui ×
(

RTTmin
RTTmin + BRi

)
(9)

cwndi = max(cwndi−1, ri) (10)

where ui, ri and SU denote increased cwnd, adjusted cwnd by
bandwidth reduction, and scheduling unit, respectively. The fi-
nal cwnd for packet i is cwndi. In Eq. (8), BWewma

i ×SU means
the number of packets that can be delivered during scheduling
unit time with the current bandwidth. This term adjusts the
amount of increase considering the current bandwidth, and
if scheduling unit is large, the time between sets becomes
longer, decreasing the frequency of cwnd increase decisions,
so the amount of increase needs to be adjusted according to
scheduling unit for high bandwidth utilization. ρi is used as
a penalty against RTT increase. Also, if the current RTT has
decreased significantly compared to the previous RTT, César
increases cwnd more. In Eq. (9), César adjusts the increase
amount to rapidly address the bandwidth reduction, which
incorporates only the BRi term from Eq. (5). Lastly, since
César has decided to increase the cwnd when RTT decreases,
Eq. (10) is used to prevent the final cwnd from decreasing due
to the reduction amount specified in Eq. (9).

F. Fairness of César

César adopts a variant of FAST’s control algorithm, thereby
inheriting its fairness characteristics to a certain extent. Ad-
ditionally, the cellular system guarantees a certain level of
fairness in resource allocation. Also, since César adjusts the
amount of cwnd increase and decrease based on bandwidth
changes, César can quickly share bandwidth fairly. When
a new flow joins the network and injects packets into the

4The delay component between the arrival times at the BS of packets i and
j (slot 1) are not considered because it is not a factor to increase the RTT of
packet j compared to i.

network, the existing flows detect a reduction in current
bandwidth compared to the ewma bandwidth according to
Eq. (7), causing the BR term to increase. The increase in
the BR term raises the decrease amount of cwnd in Eq. (5)
and reduces the increase amount in Eq. (9), causing existing
flows to reduce their cwnd. On the other hand, the new flow
experiences an increase in bandwidth, causing the BR term
to become 0. Unlike existing flows, this leads to an increase
in the cwnd, allowing the new flow to rapidly achieve its fair
share. Also, César leverages the difference between the current
and previous RTT, as well as the increase in RTT compared
to RTTmin, allowing flows with significant propagation delays
(large RTTmin) to fairly use their share.

V. EVALUATION

We evaluate César by comparing it against state-of-the-art
end-to-end CCAs on multiple commercial cellular networks.

A. Implementation and Experiment Setup

We implement César in 5.4.0 Linux kernel on an AWS
cloud server5, using a t3.small EC2 instance that offers up
to 5 Gbps network bandwidth. To ensure that memory is not
the bottleneck, the tcp_wmem and tcp_rmem parameters
for a TCP socket are set sufficiently large [32]. Addition-
ally, tcp_no_metrics_save is set to ensure that TCP
parameters are not reused in repeated experiments. To mea-
sure maximum throughput, Hystart operation of Cubic is
disabled. The cloud server sends downlink traffic to UEs using
iperf3 [33] over commercial LTE or 5G networks provided by
three mobile carriers (SKT, KT, LGU+). For UEs, we use
two types of smartphones, Samsung Galaxy S22 and S23. We
obtain RTT and received bytes data using the pkts_acked
function of the tcp_congestion_ops on the server. We
set César’s parameters to α=2, β=0.05 and γ=0.1256.

B. Scheduling Unit of Different Carriers (LTE and 5G)

Each cellular network may have different scheduling unit
depending on the technology, carrier, scheduling rules, and
parameter settings for their BS. Unfortunately, cellular BS
scheduling rules are classified information, preventing us from
knowing the ground truth. Therefore, we utilize XCAL [34], a
tool enabling analysis of control messages received at the UE,
to infer BS parameters and verify the ACK interval pattern.

As mentioned in §IV-C, Fig. 6 plots the ACK intervals on
LTE and 5G networks of three mobile carriers. For LTE, we
verify that SKT and KT utilize a 5 ms SR period, and César
correctly estimates scheduling unit as 5 ms. LGU+ employs
a 20 ms SR period, visible as a line occurring at 20 ms in
Fig. 6c. We deduce that LGU+ assigns uplink resources every
20 ms according to SR reports based on the specific scheduling
rule, resulting in an 8 ms pattern. César accurately estimates

5Code available at: https://github.com/Juhun1329/Cesar-TCP-CCA.git.
6As β increases, César prioritizes latency over throughput, and with higher

α and γ, César becomes more sensitive to changes in bandwidth and RTT.
0.2, 0.05, and 0.125 are empirically selected for balancing high throughput
and low latency simultaneously across all tested networks.

25 50 75 100 125 150
RTT (ms)

0

100

200

300

400
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(a) SKT LTE network

25 50 75 100 125 150
RTT (ms)

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(b) KT LTE network

25 50 75 100 125 150
RTT (ms)

0

100

200

300

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(c) LGU+ LTE network

20 40 60 80 100
RTT (ms)

0

250

500

750

1000

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(d) SKT 5G network

50 100 150
RTT (ms)

0

200

400

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(e) KT 5G network

20 40 60 80 100
RTT (ms)

0

500

1000

1500

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

(f) LGU+ 5G network

Fig. 10: Throughput and latency performance of different CCAs. The left and bottom edges of the box indicate the 25th percentile for
RTT and throughput, respectively, while the right and top edges indicate the 75th percentiles. The two error bars represent the 5th and 95th

percentiles, and the point where the two error bars overlap indicates the mean of the throughput and RTT. Upper-left is better performance.

scheduling unit as 8 ms. For 5G, all three mobile carriers set
the BS parameters as 0.5 ms slot length, 5 ms SR period, and
2.5 ms uplink-downlink switch time. SKT shows a 5 ms pattern
because the SR period has the dominant impact, while LGU+
shows a 2.5 ms pattern where the uplink-downlink switch time
is dominant. We infer that KT’s pattern changes from 2.5 ms
to 5 ms depending on the variations of BS’s scheduling rule
(e.g., number of users), which in turn alters the influence of
SR period and uplink-downlink switch time. César accurately
estimates scheduling unit as 5 ms for both SKT and LGU+, and
effectively adapts to the changing pattern for KT by accurately
estimating it as both 2.5 ms and 5 ms.

C. Throughput and Latency Performance

We conduct 10-second TCP experiments 50 times for each
CCA at different times of the day over 3 weeks, for each mo-
bile carrier and network type (50×6=300 experiments for each
CCA). Fig. 10 plots the throughput and latency of Cubic, BBR,
ExLL, PropRate, César, Vegas, and Copa tested on commer-
cial LTE and 5G networks across three different mobile car-
riers. To quantitatively assess their effectiveness in achieving
high throughput and low latency simultaneously, we define an
efficiency metric as Throughput (Mbit/s)/Latency (ms). Hav-
ing twice the efficiency means achieving the same throughput
with half the RTT or doubling the throughput with the same
RTT. In Fig. 10, as efficiency increases, the data point will
move towards the upper-left. Average efficiencies are presented
in Table I. To assess how high the efficiency is maintained,
Table I also presents the 25th percentile of efficiency in

parentheses. Additionally, the best (highest) values for the
respective networks are highlighted in bold.

César shows outstanding performance in achieving high
throughput and low latency simultaneously across all mobile
carriers’ 5G and LTE networks, positioning it at the most
upper-left for all cases in Fig. 10. In Table I, César achieves
the highest average efficiency compared to all other CCAs
in all networks. Additionally, even the 25th percentile effi-
ciency exceeds the average efficiency of all other CCAs in
all networks except for BBR on LGU+ LTE network. This
confirms César’s ability to maintain consistently high and
stable efficiency. Also, César achieves the lowest 95% tail
latency among the CCAs with high throughput in all networks.
These results demonstrate that César does not depend on any
specific mobile carrier nor network, and exhibits outstanding
performance across various bandwidth and RTTmin conditions.

While César has a slightly higher latency compared to
CCAs with the lowest throughput and RTT (e.g., Copa in
Fig. 10d), CCAs that focus primarily on latency are not effec-
tive for achieving high throughput (César achieves 20.78×
average efficiency compared to Copa in Fig. 10d). Despite
ExLL showing low 25th and 75th percentile latency, the tail
latency is too high, and it fails to fully utilize the bandwidth.
BBR can achieve higher throughput compared to other CCAs
because it uses the estimated maximum bandwidth within a
certain window, which can be high when bursty traffic is
processed all at once within a window. However, as mentioned
in §III-B, this requires setting the proper window size and
depends on scheduling luck.

In the SKT LTE network, César achieves throughput similar

TABLE I: Mean and 25th percentile (in parentheses) of Throughput/Latency Efficiency for Fig. 10.

Network CCA
Cubic BBR ExLL PropRate César Vegas Copa

SKT LTE 2.57 (1.8) 4.56 (2.92) 3.12 (2.68) 4.35 (3.13) 6.12 (4.88) 0.46 (0.14) 0.34 (0.09)
KT LTE 0.48 (0.29) 1.99 (1.32) 2.1 (1.36) 1.84 (1.34) 2.71 (2.26) 0.7 (0.13) 0.45 (0.01)

LGU+ LTE 0.89 (0.59) 3.17 (2.47) 1.74 (1.43) 2.19 (0.84) 3.58 (2.84) 0.42 (0.05) 0.25 (0.01)
SKT 5G 12.67 (9.34) 13.39 (5.71) 6.11 (4.89) 4.87 (0.18) 17.66 (14.76) 1.03 (0.25) 0.85 (0.14)

KT 5G 3.25 (2.51) 5.89 (3.47) 3.32 (2.73) 5.09 (3.02) 7.67 (6.87) 0.88 (0.13) 0.36 (0.03)
LGU+ 5G 21.86 (18.68) 27.06 (21.13) 17.68 (15.11) 8.08 (0.42) 34.81 (31.93) 2.13 (0.29) 1.27 (0.2)

20 40 60 80 100 120 140
RTT (ms)

0

200

400

600

800

Th
ro

ug
hp

ut
 (M

bi
t/s

) 8.93 (5.52)

9.94 (4.19)

5.32 (4.48)

1.37 (0.14)

13.83 (9.72)

0.25 (0.15)

3.17 (0.77)

Cubic
BBR
ExLL
PropRate
César
Vegas
Copa

Fig. 11: Throughput, latency, and efficiency per-
formance of different CCAs under mobility.

0 5 10 15 20 25 30 35 40 45 50
Time (s)

0

300

600

900

Tp
ut

 (M
bi

ts
/s

)

Flow1
Flow2
Flow3

0 5 10 15 20 25 30 35 40 45 50
Time (s)

0
2
4
6
8

C
W

N
D

 (b
yt

es
)

1e6

Flow1
Flow2
Flow3

Fig. 12: Throughput and cwnd of César in a 3-flow
scenario.

flows Cubic BBR César

2 0.992 0.998 0.999

3 0.995 0.987 0.994

4 0.996 0.990 0.991

TABLE II: Jain’s fairness index
when multiple flows start together.

to Cubic while attaining the lowest latency compared to BBR
and PropRate which also achieve high throughput. César
achieves 1.34× and 1.40× higher average efficiency compared
to BBR and PropRate, reducing RTT by 25% and 29% for the
same throughput. Similar improvements can also be observed
in the KT LTE network. In the LGU+ LTE network, César
exhibits slightly lower throughput compared to Cubic and BBR
but shows significantly superior latency performance.

In SKT and KT 5G networks, while all other CCAs fail
to reach the throughput of Cubic or show large variations,
only César achieves high throughput with small variations
and simultaneously maintains low latency. In the LGU+ 5G
network, César exhibits slightly lower throughput than BBR
but demonstrates outstanding latency performance, with its
average latency being close to BBR’s 25th percentile latency.

D. Performance under Mobility

In a cellular network, UEs experience channel variations
due to mobility. Therefore, we conduct experiments under
mobility conditions as well. A UE starts from a point with
an RSRP of -85 dBm, considered a good channel, and moves
along a predefined path to a region with an RSRP of -105
dBm, considered a poor channel, over the first 60 seconds.
Then, it returns to the starting point over the next 60 seconds
at the same speed. We conduct this 120-second experiment 15
times for each CCA over 2 weeks on the SKT 5G network.

Fig. 11 plots the throughput, latency, and their efficiency of
various CCAs. César’s position at the upper-left of the plot
indicates its effectiveness in achieving both high throughput
and low latency simultaneously even under mobility. In con-
trast, BBR fails to adapt well to channel variations, leading
to a significant increase in latency. As a result César achieves
1.39× average efficiency compared to BBR (was 1.32× in the
stationary scenario). In general, César shows higher efficiency

compared to all compared CCAs, effectively achieving both
high throughput and low latency even under mobility.

E. Fairness in Multiple Flows

Fig. 12 plots the cwnd and throughput of César when flow 1
initially occupies the bottleneck bandwidth, and flow 2 and 3
join the network at t=10s and 30s, respectively. When flow 2
joins, flow 1 and 2 share the bandwidth fairly, and when flow 3
joins, all three flows share the bandwidth equally. Table II
presents the Jain’s fairness index of average throughput when
multiple flows start together and coexist for 30 seconds. César
achieves a fairness score of 0.99, similar to Cubic and BBR,
demonstrating its ability to share the bottleneck capacity.

VI. CONCLUSION

No matter how high the bandwidth and low the latency
provided by cellular networks are, users cannot fully utilize
these benefits without proper operation at the transport layer.
Current delay-based CCAs fail to account for the scheduling
characteristics and the corresponding non-congestive delays
of modern cellular systems. To address this problem, we pro-
posed César, a cellular resource scheduling-aware congestion
control with only sender-side modification. César identifies the
scheduling characteristics of the current cellular link through
the ACK intervals, and adjusts the cwnd in a step-wise
manner to minimize the effects of scheduling delays. We have
demonstrated César’s ability to achieve high throughput and
low latency simultaneously in multiple commercial networks.

While César effectively reduces the impact of scheduling
delays on cwnd adjustment, César does not distinguish queu-
ing delays from occasional non-congestive delays such as
handover. However, applying our insights in Open-RAN which
facilitates cross-layer approaches can make this possible and
practical. We leave this as our future work.

REFERENCES

[1] M. I. Rochman, V. Sathya, D. Fernandez, N. Nunez, A. S.
Ibrahim, W. Payne, and M. Ghosh, “A comprehensive analysis
of the coverage and performance of 4G and 5G deployments,”
Computer Networks, vol. 237, p. 110060, 2023.

[2] J. Kim and S. Bahk, “Blockage-Aware Flow Control in E-
UTRA-NR Dual Connectivity for QoS Enhancement,” IEEE
Access, vol. 10, pp. 68 834–68 845, 2022.

[3] S. Jung and S. Bahk, “Online Control of Traffic Split and Dis-
tributed Cell Group State Decisions for Multi-Connectivity in
5G and Beyond,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 3, pp. 2843–2858, 2022.

[4] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly
high-speed TCP variant,” SIGOPS Operating Systems Review,
vol. 42, no. 5, p. 64–74, jul 2008.

[5] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the
Internet: Networks without effective AQM may again be vul-
nerable to congestion collapse,” Queue, vol. 9, no. 11, p. 40–54,
nov 2011.

[6] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee, “Understanding
bufferbloat in cellular networks,” in Proceedings of the ACM
SIGCOMM Workshop on Cellular Networks: Operations, Chal-
lenges, and Future Design (CellNet’12), 2012, p. 1–6.

[7] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen,
“Understanding On-device Bufferbloat for Cellular Upload,” in
Proceedings of the Internet Measurement Conference (IMC’16),
2016, p. 303–317.

[8] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,
S. Sen, and O. Spatscheck, “An in-depth study of LTE: effect
of network protocol and application behavior on performance,”
in Proceedings of the ACM SIGCOMM, 2013, p. 363–374.

[9] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based
Congestion Control for the Internet,” in Proceedings of the
Applied Networking Research Workshop (ANRW), 2018, p. 19.

[10] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Conges-
tion Control for Web Real-Time Communication,” IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 2629–2642,
2017.

[11] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-Based Congestion Control:
Measuring bottleneck bandwidth and round-trip propagation
time,” Queue, vol. 14, no. 5, p. 20–53, Oct 2016.

[12] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP
Vegas: new techniques for congestion detection and avoidance,”
SIGCOMM Computer Communication Review, vol. 24, no. 4,
p. 24–35, Oct 1994.

[13] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee, “ExLL:
an extremely low-latency congestion control for mobile cellular
networks,” in Proceedings of the 14th International Confer-
ence on Emerging Networking EXperiments and Technologies
(CoNEXT), 2018, p. 307–319.

[14] W. K. Leong, Z. Wang, and B. Leong, “TCP Congestion
Control Beyond Bandwidth-Delay Product for Mobile Cellular
Networks,” in Proceedings of the 13th International Confer-
ence on Emerging Networking EXperiments and Technologies
(CoNEXT), 2017, p. 167–179.

[15] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg,
“Adaptive Congestion Control for Unpredictable Cellular Net-
works,” in Proceedings of the ACM SIGCOMM, 2015, p.
509–522.

[16] S. Abbasloo, Y. Xu, and H. J. Chao, “C2TCP: A Flexible
Cellular TCP to Meet Stringent Delay Requirements,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 4,
pp. 918–932, 2019.

[17] X. Xie, X. Zhang, and S. Zhu, “Accelerating Mobile Web
Loading Using Cellular Link Information,” in Proceedings of

the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys’17), 2017, p. 427–439.

[18] Y. Xie, F. Yi, and K. Jamieson, “PBE-CC: Congestion Con-
trol via Endpoint-Centric, Physical-Layer Bandwidth Measure-
ments,” in Proceedings of the ACM SIGCOMM, 2020, p.
451–464.

[19] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Bal-
akrishnan, “ABC: A Simple Explicit Congestion Controller for
Wireless Networks,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), Santa Clara,
CA, Feb. 2020, pp. 353–372.

[20] 3rd Generation Partnership Project (3GPP), “NR; Physical chan-
nels and modulation,” 3GPP, TS 38.211, 2024, version 18.3.0.

[21] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu, “Supporting
Mobile VR in LTE Networks: How Close Are We?” Proceed-
ings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 1, March 2018.

[22] 3rd Generation Partnership Project (3GPP), “NR; Physical layer
procedures for data,” 3GPP, TS 38.214, 2024, version 18.3.0.

[23] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda,
“Downlink Packet Scheduling in LTE Cellular Networks: Key
Design Issues and a Survey,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 2, pp. 678–700, 2013.

[24] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in
end-to-end congestion control,” in ACM SIGCOMM, 2022, p.
177–192.

[25] A. Balasingam, M. Bansal, R. Misra, K. Nagaraj, R. Tandra,
S. Katti, and A. Schulman, “Detecting if LTE is the Bottleneck
with BurstTracker,” in The 25th International Conference on
Mobile Computing and Networking (MobiCom). ACM, 2019.

[26] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the
performance of TCP pacing,” in Proceedings IEEE Interna-
tional Conference on Computer Communications (INFOCOM),
vol. 3, 2000, pp. 1157–1165.

[27] R. V. Bhat, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Network- and application-aware adaptive congestion control
algorithm,” Journal of Communications and Networks, vol. 26,
no. 3, pp. 344–355, 2024.

[28] M. Park and J. Paek, “TAiM: TCP Assistant-in-the-Middle for
Multihop Low-power and Lossy Networks in IoT,” Journal of
Communications and Networks, vol. 21, no. 2, pp. 188–195,
2019.

[29] D. Katabi, M. Handley, and C. Rohrs, “Congestion control
for high bandwidth-delay product networks,” in Proceedings
of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM’02).
ACM, 2002, p. 89–102.

[30] E. F. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An
emulation-based evaluation of TCP BBRv2 Alpha for wired
broadband,” Computer Communications, vol. 161, pp. 212–224,
2020.

[31] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Mo-
tivation, Architecture, Algorithms, Performance,” IEEE/ACM
Transactions on Networking, vol. 14, no. 6, pp. 1246–1259,
2006.

[32] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu,
X. Zhang, D. Rybkin, Z. Yang, Z. M. Mao, F. Qian, and Z.-
L. Zhang, “A variegated look at 5G in the wild: performance,
power, and QoE implications,” in Proceedings of the ACM
SIGCOMM, 2021, p. 610–625.

[33] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu.,
“iperf3: A TCP, UDP, and SCTP network bandwidth measure-
ment tool.” 2019, https://iperf.fr.

[34] Innowireless., “XCAL.” 2024, https://www.innowireless.co.kr,
https://www.accuver.com.

