
Dodge-Jam: Anti-Jamming Technique for
Low-power and Lossy Wireless Networks

Jeongyoon Heo, Jung-Jun Kim, and Saewoong Bahk∗
Department of Electrical Engineering
Seoul National University and INMC

Seoul, Republic of Korea
E-mail: {jrheo, jjkim, sbahk}@netlab.snu.ac.kr

Jeongyeup Paek
School of Computer Science & Engineering

Chung-Ang University
Seoul, Republic of Korea
E-mail: jpaek@cau.ac.kr

Abstract—Jamming is one of the most famous and powerful
attacks in wireless networks, and is advancing to be more stealthy
and long-lasting with limited energy. Stealthy attackers transmit
short jamming signals to become less detectable with less energy,
and yet powerful enough to ruin the entire packet transmission
procedures. For this study, we deal with three types of stealthy
attacks: ‘reactive jamming’, ‘jamming ACK’, and ‘fake ACK’
attacks. These attacks are fatal to Low-power and Lossy wireless
Network (LLN) applications because they not only interfere with
communication, but also cause LLN devices to quickly drain their
batteries.

In this paper, we present Dodge-Jam, a light-weight anti-
jamming technique suitable for LLN environments to address
the stealthy jamming attacks with small overhead. It protects
ACK exchange by switching the ACK channel calculated based
on the content of a data packet. Moreover, by partitioning a
packet into multiple small blocks and performing logical shifts
of the blocks when retransmitting the packet, it helps the receiver
recover the original packet from multiple erroneous packets.
We implement Dodge-Jam on practical embedded devices, and
evaluate its performance through experiments on a multihop LLN
testbed. Our results show that Dodge-Jam successfully avoids
many jamming attacks, recovers packets that have been jammed,
and improves packet delivery performance of both singlehop and
multihop networks significantly.

Index Terms—Low-power Lossy Network (LLN), IEEE
802.15.4, Jamming, Security, Wireless Sensor Network

I. INTRODUCTION

Low-power and Lossy Networks (LLNs) have been used
widely in many areas including smart grids [1], wireless sensor
networks (WSN) [2][3][4], and Internet of Things (IoT). How-
ever, LLNs, often comprised of resource-constrained battery-
operated devices, are vulnerable to jamming attacks that cause
Denial-of-Service (DoS) [5]. When a jammer sends jamming
signals in order to disrupt communication, the target node
under attack repeatedly fails in transmission attempts and
retransmits the packets, which will severely decrease network
performance and quickly exhaust the battery of the devices.
Jamming is critical to applications that are sensitive to delay
or loss. For example, if a medical network which monitors
patients’ physiological data over an LLN [6] is under attack,

Saewoong Bahk is the corresponding author.
This work was supported in part by the ICT R&D program of MSIP/IITP

Korea (B0717-16-0026) and the National Research Foundation of Korea
(NRF-2015R1A2A2A01008240), and in part by the Basic Science Re-
search Program through the National Research Foundation of Korea (NRF-
2014R1A1A2056626).

serious problems may arise because they are directly linked
to patients’ life and death. Home security systems using
WSN [7][8] also have a similar problem. An intruder may
use jamming attacks to break into a house by disturbing
transmissions of alarm messages to the home control center.
Jamming attack can also affect smart grids and smart factories
to make misjudgments and cause erroneous operation [9].

LLN devices may be helpless against well-funded power-
ful wideband jamming attackers [5]. However, if a battery-
operated jammer transmits jamming signal continuously at
high power, that will drain jammer’s energy quickly resulting
in short overall jamming lifetime. If the jammer has a sufficient
amount of energy to be powerful and long-lasting, then it can
be easily detected by legitimate defenders [10]. On the other
hand, there are more advanced attacks that are less detectable
and long-lasting while consuming minimal energy. In these
kinds of stealthy attacks, attackers only send jamming signals
as needed, just enough to disrupt communication. For example,
in ‘reactive jamming’, an attacker sends jamming signals only
when it detects on-going packet transmissions.

‘Jamming ACK’ attack is also one of such attacks. The
jammer detects (or predicts) an ACK transmission, and upon
detection, sends a short jamming signal to jam only the ACK
frame in order to make the legitimate sender keep retrans-
mitting the original packet. Furthermore, the work in [11]
introduces ‘fake ACK’ attack which disturbs communication
by sending a jamming signal during a packet transmission,
and then sends a fake ACK to make the sender believe
that the original packet transmission has succeeded. There
have been several prior works that address these attacks
[5][11][12][13][14][15], but most of these efforts either require
expensive pre-shared secrets, resulting in limited effect, or
incur excessive overhead to resource and power limited LLN
devices.

To address these challenges, we design Dodge-Jam, a
light-weight anti-jamming technique for LLNs without large
overhead. Dodge-Jam confronts attackers that have the same
capability level (in terms of processing, memory, transmis-
sion power, and battery) with legitimate LLN devices. It is
composed of three main techniques: ‘ACK channel hopping’,
‘multi-ACK channel hopping’ and ‘multi-block data shift’. To
address the fake ACK attack, ACK channel hopping changes
the channel on which to send ACK frames from the channel

978-1-5090-6599-8/17/$31.00 ©2017 IEEE 271

on which data packets have been received. There can be
a channel-scanning attacker that scans channels to find on
which channel a legitimate packet is transmitted, and to jam
that channel [5]. ACK channel hopping is free from such an
attack because ACK transmission is too short to be found
by the attacker using channel scanning. Multi-ACK channel
hopping applies a random rendezvous technique to the ACK
channel hopping in order to avoid the jamming ACK attack
opportunistically.

Multi-block data shift is designed to recover jammed and
corrupted packets. The sender partitions a packet into sev-
eral small blocks and adds a CRC for each block. When
retransmitting the packet due to transmission failure (upon
no ACK reception due to reactive jamming attack, jamming
ACK attack, or natural link loss), it performs a logical shift
to the packet with the expectations that some blocks have
been successfully received at the receiver and the attacker jams
similar part(s) of the packet. After a few retransmissions, the
receiver can recover the original jammed packet from multiple
erroneous packets.
The contributions of this work are threefold:
• We study three stealthy jamming attacks in LLNs: ‘reactive

jamming’, ‘jamming ACK’, and ‘fake ACK’ attacks, and
experimentally measure how destructive they are to com-
munication between LLN devices.

• We design ‘Dodge-Jam’, a lightweight anti-jamming tech-
nique for LLNs, that combines ‘ACK channel hopping’,
‘multi-ACK channel hopping’, and ‘multi-block data shift’
defense mechanisms to defeat the aforementioned attacks.
We then show how each of the components in Dodge-Jam
contributes to defeating these attacks.

• We implement Dodge-Jam TelosB [16] wireless sensor net-
work platform and experimentally evaluate its performance
through real testbed experiments on both single-hop and
multi-hop topologies. Our evaluation shows that Dodge-Jam
achieves significantly better packet delivery ratio compared
to the network without Dodge-Jam. In some cases, it allows
the network under attack to continue to operate and com-
municate, which would otherwise have been useless without
Dodge-Jam.
The remainder of this paper is structured as follows. Sec-

tion II discusses related work, and Section III describes three
stealthy jamming attacks in LLNs that are energy-efficient
and effective. Then, we propose Dodge-Jam to defeat these
jamming attacks in Section IV. In Section V, we describe
how we implement the attacks and Dodge-Jam. Section VI
evaluates both the impact of the attacks and the performance
of Dodge-Jam on how it tackles those attacks. Finally, Sec-
tion VII concludes the paper.

II. RELATED WORK

Two pieces of work that are the closest to ours are Jam-
Buster [17] and DEEJAM [5]. These works target jamming
attackers in the same capability class as network nodes, and
their goal is to increase the cost of jammers and force them to
transmit more jamming signals to achieve effective jamming,

Preamble
Sequence

Frame payloadSeqFCF AddressLengthSFD FCS

SHR PHR MHR MFRMAC payload

(a) Data frame format

Preamble
Sequence

SeqFCFLengthSFD FCS

SHR PHR MHR MFR

(b) ACK frame format

Fig. 1. Frame formats of IEEE 802.15.4.

which will reduce the lifetime and increase the detectability
of the jammers.

In DEEJAM [5], the authors first describe the effectiveness
and stealthiness of interrupt jamming attack (and its variants),
and how vulnerable an IEEE 802.15.4 based wireless net-
work can be under such energy-efficient jamming. Then they
propose four defensive mechanisms: frame masking, channel
hopping, packet fragmentation, and redundant encoding. Both
the attacks and defense mechanisms are evaluated on MicaZ
motes to show that their proposal is effective in mitigating
such jamming attacks. However, their solutions are based on
pre-shared keys, and rely on tight synchronization between
legitimate senders and receivers, resulting in high overhead
even in the absence of jamming attacks.

In Jam-Buster [17], the authors point out that low resilience
and easy differentiability of protocol control messages, as well
as high predictability of node wakeup schedules, are what
makes LLNs vulnerable to jamming, and propose to eliminate
such vulnerability by using multi-block payloads, equal size
packets, and randomized wakeup times of network nodes. The
idea of using multi-block payloads is similar to one of our
schemes. However, it targets only duty-cycled MAC, increases
the packet transmission overhead by making all packet sizes
larger even in the absence of jamming, and does not handle
stealthier jamming ACK or fake ACK attacks. Furthermore,
unlike our work, both Jam-Buster [17] and DEEJAM [5]
evaluate their schemes only on a 1-hop network setup without
considering multihop scenarios.

To handle jamming ACK attack, Zhang et al. propose JACK
which applies a random backoff for sending an ACK [12].
JACK starts with sending an ACK at a randomly chosen time
between [0, (R − 1) · TACK], where TACK is the time for
sending the ACK. They found 7.5 as an optimal value for R
which means that JACK takes 7.5 times longer compared to
the original ACK sending. To disable JACK, an attacker may
simply send a longer jamming signal which only makes the
attacker spend a little more energy. Therefore, it has a limited
effect with large overhead. To handle the fake ACK attack, the
works in [11][13][14][15] make efforts of authenticating ACK
packets, but all of which need expensive pre-shared secrets.

III. ATTACK MODELS

In this paper, we study and tackle three kinds of stealthy and
energy-efficient attacks: ‘reactive jamming’, ‘jamming ACK’,
and ‘fake ACK’ attacks. This section describes each of these
attacks.

272

Preamble Payload FCSSFD Len Seq

Jamming

(a) Reactive jamming attack.

Preamble Payload FCSSFD Len Seq

Jamming

ACK

(b) Jamming ACK attack.

Preamble Payload FCSSFD Len Seq

Jamming ACK

(c) Fake ACK attack.

Fig. 2. An operation example of reactive jammer, jamming ACK attacker
and Fake ACK attacker.

A. Reactive jamming

A reactive jammer jams a packet ‘reactively’ only when
it detects an on-going packet transmission to minimize the
energy usage and the risk of getting detected while jamming. If
a jammer sends jamming signals continuously, not only it will
drain its energy quickly resulting in short jamming lifetime,
but it will also be easily detected. Therefore, the reactive
jammer ensures that it sends a jamming signal just long enough
to drop a packet, but at the same time short enough to be not
easily detected while minimizing energy usage.

The attacker can detect the beginning of an on-going
packet transmission by sensing a start-of-frame-delimiter
(SFD) signal. Fig. 1(a) shows the data frame format of IEEE
802.15.4 [18]. The synchronization header (SHR) consists of
a preamble sequence and the SFD, and always precedes a
transmission. After a node receives the SFD field, the SFD pin
goes active and interrupts the microcontroller to start reading
data from the packet buffer. Fig. 2(a) shows the procedures
of reactive jamming. When the attacker detects the SFD, it
switches its state from receiving mode to transmission mode,
which requires the Rx-Tx switching delay of roughly 192µs on
our platform [19]. After the Rx-Tx switching, it starts jamming
to interfere with legitimate transmissions.

B. Jamming ACK attack

Jamming an ACK frame is another kind of attack that is
energy efficient and not easily detectable. A jamming ACK
attacker disturbs communication by sending a jamming signal
that collides with an ACK frame. Normally, when a receiver
successfully receives a packet, it sends an ACK frame back to
the sender. If the sender does not receive the ACK frame for
a specific ACK waiting time, it supposes that the transmission
has failed. By hampering the ACK, the jamming ACK attacker
ruins the packet transmission and makes the sender keep
retransmitting the entire packet. Fig. 2(b) shows an example of
jamming ACK attack. After a jamming ACK attacker detects
a packet transmission by sensing the SFD, it gets its length
value which is located right after the SFD. From the length

value, it calculates the time when the receiver is going to send
the ACK, and sends the jamming signal at the exact time to
disturb it.

C. Fake ACK attack

Fake ACK attack is stealthier than the aforementioned
attacks. If a packet transmission keeps failing, the sender
assumes that the link quality has degraded and thus updates
its neighbor table. Then, the routing layer of the sender may
change its routing path to send packets on. This recovery pro-
cess at the routing layer may successfully avoid the jamming
area and send packets on a new routing path.

A fake ACK attacker jams a data packet, and then sends
a legitimate-looking fake ACK to make the sender believe
that the receiver has successfully received the packet. When
a node receives an ACK, it cannot know who sent the ACK
because, as shown in the Fig. 1(b), the ACK frame of IEEE
802.15.4 does not include the address of the ACK sender [18].
Therefore, the attacker can fool the sender by making a fake
ACK just with the proper sequence number. Fig. 2(c) shows an
operation example of a fake ACK attacker. When the attacker
detects the packet transmission, it gets the length value and
the sequence number from the beginning of the packet to
construct and send ACK properly. Then, it jams the data packet
and creates an ACK with the corresponding sequence number.
Using the length value, the attacker sends the ACK frame at
an appropriate time in which the legitimate receiver sends the
ACK when it receives the packet successfully.

IV. PROPOSED SCHEME: Dodge-Jam

To evade jamming attacks and recover jammed packets
from those attacks described in Section III, we present three
defense mechanisms. ACK channel hopping addresses the fake
ACK attack by making sure that a sender is not fooled by
fake ACKs, and multi-ACK channel hopping uses multiple
channels when sending ACKs to cope with the jamming ACK
attack. Multi-block data shift helps the receiver recover a
jammed packet by reconstructing the original packet from
multiple block-shifted retransmissions when some blocks are
transmitted in error. Lastly, we propose Dodge-Jam which
adaptively combines the three aforementioned schemes to
provide a comprehensive defense against the jamming attacks.

A. ACK channel hopping

To evade the fake ACK attack, we propose ACK channel
hopping in which a sender and a receiver change the channel to
exchange ACK dynamically on a per-packet basis. A channel
on which to send an ACK, CACK , is calculated as,

CACK = rand(hash(data)) mod 16 + 11 (1)

where rand() is a pseudo random function which is used to
generate a channel randomly. We use a hash() function to
generate a 16 bits input for the random function based on the
input data. In practice, this can be also a crc16() function
for simplicity. The input data of Eq. (1) includes both the
MAC header and the MAC payload. Since the MAC header

273

Header Payload

ACK
CACK

(a) ACK channel hopping

Header Payload

ACK

ACK

CACK1

CACK2

(b) Multi-ACK channel hopping

Header 0 Data0 CRC Data1 CRC Data2 CRC

Header 1 Data1 CRC Data2 CRC Data0 CRC

Header 2 Data2 CRC Data0 CRC Data1 CRC

Flag

Time

(c) Multi-block data shift

Fig. 3. An operation example of ACK channel hopping, multi-ACK channel
hopping, multi-block data shift.

includes a sequence number for each message, including the
header ensures that the two consecutive packets with the same
payload will have different ACK channels.

From the ACK channel hopping, only a node who receives
the whole packet can calculate and send ACK properly.
Fig. 3(a) illustrates an example of ACK channel hopping. After
the sender sends a packet, it calculates the ACK exchange
channel from the data it sent and switches the listening channel
to receive the ACK. When the receiver receives the packet, it
calculates the channel to send the ACK from the received data.
Since the attacker sends jamming signals during the packet
transmission, it cannot receive the whole packet as is and
compute the proper ACK channel. Therefore, if we use ACK
channel hopping, we can defeat the fake ACK attack.

B. Multi-ACK channel hopping

ACK channel hopping is also effective for preventing jam-
ming ACK attack if the ACK channel selection procedures (i.e.
Eq. (1)) are not known to the attacker. In this scenario, the best
alternative that the attacker can use is a brute-force method in
which it randomly picks a channel to attack, whose probability
of success reaches only 1/(total number of channels) i.e.
1/16. However, if the ACK channel hopping procedures are
known to the jamming ACK attacker who overhears the whole
packet, then the attacker can calculate the ACK channel in the
same way as a legitimate receiver and successfully jam the
ACK. We call this attack ‘channel hopping jamming ACK
attack’. The ACK channel hopping also works against this
channel hopping jamming ACK attacker by making it spend
more energy in jamming the ACK frames, although it has a
limitation that it cannot completely prevent the attack itself.

To deal with this issue, we propose multi-ACK channel
hopping to avoid the channel hopping jamming ACK attack

ACK

ACK

CACK1

CACK2

Header 0 Data0 CRC Data1 CRC Data2 CRC

Flag

Header 1 Data1 CRC Data2 CRC Data0 CRC

CACK3
ACK

Fig. 4. An operation example of Dodge-Jam.

stochastically. When the receiver receives a packet, it obtains n
channels from the received data by repeatedly using Eq. (1).
That is, it repeats the calculation of Eq. (1) until it obtains
n different channels. Then, it sends n ACKs in a random
sequence of the n channels. The sender waits for the ACK
at a channel that is randomly selected from the calculated
n channels. As the attacker cannot know neither the ACK
channel of the sender nor the channel sequence of the receiver,
it can only jam a randomly selected channel among the n
channels. From this procedure, we lower the probability of
successful channel hopping jamming ACK attack to 1/n.

Fig. 3(b) shows an example of multi-ACK channel hopping
using 2 channels. From a received packet, the receiver com-
putes two ACK channels, CACK1 and CACK2, and decides
to send ACKs over CACK1 and CACK2 in order. The sender
decides the channel on which to wait for the ACK as CACK2.
Then the sender receives the ACK on CACK2 when the
receiver sends the second ACK, given that there is no attack on
CACK2. In this example, we avoid jamming ACK attack with
probability 1/2. From retransmissions, the probability of suc-
cessfully avoiding jamming increases rapidly. If the receiver
continuously uses two channels to send ACKs, the probability
of avoiding jamming is 1 −

(
1
2

)k
, where k is the number

of total transmissions of the packet. It is 87.5% after the 2
retransmissions and about 94% after the 3 retransmissions.

C. Multi-block data shift

To reconstruct and recover a data packet under reactive
jamming or fake ACK attack, we propose multi-block data
shift. In this scheme, a sender partitions a packet into multiple
small blocks, and adds a CRC for each block at the end of
that block. When the receiver receives the packet, it checks the
CRC of each block as well as the CRC of the entire packet. If
all the blocks pass the CRC check, it sends an ACK back to the
sender. Otherwise, it only saves those blocks which pass the
CRC check and waits for next retransmission. On the sender
side, the sender performs logical shift of the blocks every time
it needs to retransmit the packet. Since stealthy attackers jam
packets only for a short duration for energy and detectability
reasons, there can be some blocks which are not jammed. Also,
since a reactive attacker or a fake ACK attacker who jams the
data packet sends jamming signals after it senses the SFD, it is
highly probable that jamming signals are inserted at a similar
position of the data packet for each transmission. Hence, if the
sender transmits shifted packets for retransmissions, the block
at which the packet is jammed at the previous transmission
may not be jammed when it is retransmitted. Based on this

274

intuition, the receiver recovers the jammed packet from several
erroneous retransmissions of shifted packets.

Fig. 3(c) shows an example of multi-block data shift which
separates a packet into three blocks. Without loss of generality,
we give a number starting from 0 to each block according to
the position of the block in the original packet. The sender
inserts a 1-byte CRC at the end of each block. In front of
the payload, it adds 1 byte flag which is the number of the
first block in the packet to notify the order of the blocks. For
example, if a flag is 1, the order of blocks is 1, 2, and 0.
If the sender does not receive an ACK after a transmission,
it performs the logical shift and retransmits the packet until
it receives an ACK for the packet. Adding the CRC and the
flag is the overhead of applying the multi-block data shift. If
we partition a packet into three blocks, the overhead takes up
about 3% of the packet when the size of the packet is 127
bytes.

D. Dodge-Jam

Finally, Dodge-Jam combines the three mechanisms de-
scribed above to handle all the aforementioned attacks. Fig. 4
shows an operation example of Dodge-Jam which partitions
a packet into three blocks. First, a sender sends a multi-
blocked packet, and the receiver computes and changes the
channel to send ACK on. If there is a fake ACK attacker,
we cannot recover the packet by using multi-block data
shift alone because the attacker sends a fake ACK which
prevents the sender from knowing the transmission failure
and retransmitting. Combining multi-block data shift and ACK
channel hopping lets the sender successfully recover the packet
even when there is a fake ACK attacker. For the first packet
transmission, we use only one ACK channel to decrease
overhead when the network is not under attack. If the sender
does not receive an ACK, it will shift the packet blocks and
retransmits the packet. When retransmitting the packet, we
apply the multi-ACK channel hopping and increase the number
of ACK channel by 1 for each retransmission. While doing
this, we limit the maximum number of ACK channels to M
to put a bound on the overhead (M = 3 in our experiments).

However, there is a challenging issue. If a sent packet is
lost, the number of sent packets at the sender and the number
of received packets at the receiver may become different.
This inconsistency makes the sender and receiver to use
different size of channel pools. To address the issue, we
use the flag field which is used in multi-block data shift in
Section IV-C. In multi-block data shift, the flag field is added
to notify the order of the blocks. If we increase this value
by 1 for each retransmission, the receiver knows both the
exact number of sent packets and the first block which is
flag mod # of blocks.

V. IMPLEMENTATION

Each LLN node, for both attackers and legitimate nodes, is
a TelosB clone device [16] with an MSP430 microcontroller
and a CC2420 radio operating at 2.4GHz ISM band with
16 channels. We implement the attacks and Dodge-Jam in

ContikiOS 2.7, and the transmission power of each node is
configured to -7dBm.

A. Implementing the Attackers
Each attacker described in Section III tries to respond

quickly to on-going legitimate transmissions to perform its
attack. In particular, the reactive jammer and the fake ACK
attacker should start sending jamming signals fast enough to
corrupt ongoing packet transmissions, and all three attackers
need some time to prepare for jamming which includes Rx-Tx
switching delay and the time to construct the jamming signal.
For this reason, all the attackers terminate their packet recep-
tion process as soon as they gain the necessary information to
attack the packet transmission.

To achieve this promptness, the attackers change their
receive mode from buffered to unbuffered mode. If a node is in
the buffered mode, it accesses the packet data after it buffers
the data in the RXFIFO buffer. However, in the unbuffered
mode, when a receiver senses a SFD signal, the CC2420 chip
of the receiver forwards the data directly to the microcontroller
without buffering. Therefore, the attackers use the unbuffered
mode to get the necessary data in real-time and change their
state to the transmission mode to jam the ongoing packet.
By default, CC2420 transceiver uses clear channel assessment
(CCA) to send a packet only when the channel is idle. To
interfere with an ongoing packet, we turn off the default CCA
of the attackers. Furthermore, we also turn off the default
autoACK feature since it is unnecessary for the jammer.

B. Implementing Dodge-Jam
There are three main components in Dodge-Jam, which are

all implemented at an Dodge-Jam-layer between the link layer
and the CC2420 chip. First, to implement the multi-block data
shift, we disable the default CRC check in CC2420. Then, we
make the sender partition a packet into multiple blocks, and
add a CRC of each block at the end of the block. We also
add a 1-byte flag to indicate the partitioning sequence of the
packet.

To implement the ACK channel hopping and the multi-ACK
channel hopping, we first disable the default autoACK feature
and handle the ACK creation and transmission in the software
at the Dodge-Jam-layer. When a data packet is delivered to the
Dodge-Jam-layer from the physical layer, the receiver checks
the flag value to decide the number of channels to send ACKs
on, and then selects the ACK channels by using the content
of the frame. The sender also chooses the ACK receiving
channels in the same way as the receiver. The number of
channels that the sender and the receiver compute depends
on the number of transmissions. The receiver sends ACKs in
a random sequence of the computed channels and the sender
randomly picks one of the computed channels to wait for the
ACK. After the ACK exchange, they return to the original
channel.

VI. EVALUATION

In this section, we provide and analyze the measurement
results for each of the three attacks, and evaluate how Dodge-

275

TABLE I
SHORTHAND NOTATIONS FOR ATTACKS AND DEFENSE SCHEMES

N0 Baseline (without any attack)
A1 Reactive jamming attack
A2 Fake ACK attack
A3 Jamming ACK attack

A3∗ Channel hopping jamming ACK attack
D1 Multi-block data shift
D2 ACK channel hopping
D3 Multi-ACK channel hopping

R S

Sender	 Receiver	

data packet

ACK

2m

1.5m 1.5m

A,acker	

Fig. 5. Single-hop scenario with one sender, one receiver, and one jammer.

Jam defeats or diminishes the effect of those attacks. We
experiment on both single-hop and multihop testbed setups,
and compare the results for three different jammer locations
in the multihop case. We also investigate the effect of various
components and parameter settings in Dodge-Jam.

Table I lists the shorthand notations of the three at-
tack models that we study, and also the defense mecha-
nisms/components of Dodge-Jam. For all experiments, we set
the maximum number of retransmissions at the link layer to
4, which means a sender may send the same packet up to
5 times. All experiments are performed in an indoor office
environment.

For performance evaluation metrics, we use the packet
reception ratio (PRR) and the average number of required
transmissions per packet (ATX) defined as,

PRR =
number of successfully received unique packets

number of sent unique packets
, (2)

ATX =
total number of transmissions

number of successfully received unique packets
. (3)

ATX is used to measure the overhead due to packet retrans-
missions, and it should ideally converge to the well-known
ETX (expected number of transmissions) metric [20] (or vice
versa) in the link layer unless the link is completely broken
(in which case, PRR is zero and ETX/ATX becomes infinity).
The minimum value of ATX is 1 when all transmissions are
successful without any retransmission, and a smaller ATX
value indicates better transmission performance.

A. Single-hop Scenario

First, we study the packet delivery performance for a single-
hop unicast transmission scenario with a sender, a receiver and
a jammer. The sender and the receiver are placed 2 m away
from each other and at a 1 m height from the floor. The jammer
is placed 1.5 m away from them at the same height as shown

TABLE II
EFFECT OF ATTACKS WITHOUT ANY DEFENSE

Attack Average ATX Average PRR
N0 1.038 1.0
A1 infinite 0.0
A2 infinite 0.0
A3 5 1.0

(a) PRR (b) ATX

Fig. 6. Packet delivery performance comparison in a single-hop scenario
under three different attacks, with and without Dodge-Jam.

in Fig. 5. The attacker starts jamming as soon as possible (as
explained in Fig. 2), and in the default setting, sends a 9-bytes
jamming signal for both data jamming and ACK jamming. We
use 3 blocks when performing multi-block data shift which
results in a block size of 17 bytes for our 45 bytes payload
and 6 bytes network-layer header. For each experiment, the
sender sends 100 data packets at an inter-packet interval of
3 seconds. Tests are repeated five times and we average the
results. Error bars represents 95% confidence intervals.

Table II presents the effect of each of the three attackers
without any defense mechanism in a single-hop scenario.
When there is no attacker (N0, the baseline case), both the
PRR and ATX are almost 1, which means that there are very
few packet losses and retransmissions. When there is a reactive
jammer (A1) or a fake ACK attacker (A2), PRR and ATX
become zero and infinite, respectively, which means that both
the attackers cause all the packet transmissions to fail. In case
of the jamming ACK attack (A3), the sender is unaware of the
packet reception at the receiver. Thus, the receiver correctly
receives most, if not all, of the packets because the jammer
only jams the ACK while the sender retransmits the same
packet 4 times due to no ACK reception. After sending the
fifth transmission including 4 retransmissions, the sender gives
up and sends the next packet. For this reason, although PRR of
this case is 1, the sender exhausts the maximum retransmission
count, which makes ATX 5. Fig. 6 shows the performance
of Dodge-Jam. The white and gray bars represent the results
with and without Dodge-Jam, respectively. If Dodge-Jam is in
action, PRR results are almost 1 in all cases (Fig. 6(a)), which
proves that all the attacks have been successfully defeated.
When the link is under the reactive jamming (A1) or fake ACK
attack (A2), Dodge-Jam uses retransmission-based multi-block
data shift to recover the jammed packet, which makes ATX
approximately 2.

To investigate deeper into the contribution of individual
components of Dodge-Jam, we plot Fig. 7. In the case of
reactive jamming (A1) attack, if we apply multi-block data

(a) PRR (b) ATX

Fig. 7. Effects of Dodge-Jam components under various attacks.

Fig. 8. ATX results under A3∗ with various combination of defense
mechanisms. Since this attack only jams the ACK frames and does not jam
the data packet, PRR is 1 for all cases from the receiver’s point of view.

shift (D1), ATX is approximately 2 while PRR is 1, which
means that the receiver recovers the jammed packet after
a retransmission in most cases. If we apply ACK channel
hopping (D2) in addition to multi-block data shift (D1),
this combination, denoted as D1+D2, yields almost the same
results with D1 only case, from which it is clear that D1
is powerful enough to defend against reactive jammer (A1).
However, in the case of fake ACK attack (A2), the receiver
cannot recover a jammed packet with multi-block data shift
(D1) because the sender does not retransmit the packet once
it receives the fake ACK from the attacker. When we apply
the combination of D1+D2, it can avoid fake ACK attack
by changing the channel to send the ACK. ATX in this
case is about 2.36, which is slightly larger than the ATX
results under reactive jamming (A1). This is because, since
the fake ACK attacker must listen to the sequence number,
its jamming position is slightly delayed compared to that of
the reactive jammer. This sometimes results in the fake ACK
attacker corrupting more than one block and increases ATX.
In the case of jamming ACK attack (A3), it is challenging
to avoid the attack only with multi-block data shift (D1)
because the attacker jams ACK frames to make the sender
keep retransmitting the packets. In order to avoid A3, the
combination of D1+D2 is required to hide the ACK channel
from the attacker. This has been successful as can be seen
from the fact that ATX is approximately 1.

We also consider another kind of jamming ACK attack
which changes the ACK channel in the same way as the multi-
ACK channel hopping. We call this attack ‘channel hopping
jamming ACK attack’ (A3∗). Fig. 8 shows the experiment
results under A3∗. ATX of D1+D2 is 5 which implies that
ACK channel hopping (D2) is insufficient to avoid A3∗.
The expected ATX of multi-ACK channel hopping (D3),
E[ATXD3], is calculated as,

(a) PRR (b) ATX

Fig. 9. Performance of multi-block data shift and multi-block without data
shift with the number of blocks and the jamming position.

(a) PRR (b) ATX

Fig. 10. Performance of multi-block data shift with the number of blocks
and the jamming length

E[ATXD3] =

5∑
k=1

k · (n− 1) ·
(
1

n

)k

+ 5 ·
(
1

n

)5

(4)

where n is the number of ACK channels used in D3. If
D3 uses two channels to send ACK (n = 2), E[ATXD3]
is approximately 1.94.

In the case of Dodge-Jam, we obtain the expected ATX,
E[ATX Dodge-Jam], as

E[ATX Dodge-Jam] = 1 +

5∑
k=3

k ·
(
1

3

)k−2

+ 5 · 1
2
·
(
1

3

)3

, (5)

which becomes approximately 2.72. The experimental results
in Fig. 8 match the results of the theoretical calculation,
which validates both our analysis and the correctness of our
experiments.

To investigate the impact of data shifting and the number
of blocks B of multi-block data shift (D1) on Dodge-Jam’s
performance, we plot Fig. 9. The light gray bars represent the
results of D1 when the link is under reactive jamming (A1)
that transmits a jamming signal as soon as possible. We call
this attack ‘front A1’ in this experiment and use it as A1 in all
other experiments. The dark gray bars show the results of D1
when there is an A1 attacker who transmits a jamming signal
with some delay which causes the attacker to jam the packets
in the midst of transmission. We call this attack ‘middle A1’.
The white bars show the results of the multi-block without data
shift. Only with multi-block, ATX is infinite and PRR is 0 for
all the cases because the receiver cannot recover the jammed
packet even after maximum retransmissions. When we apply
D1 under ‘front A1’ attacker, ATX is about 2 regardless of the
number of blocks because, in most of the cases, the attacker

277

0 7 m

5 2

3

: Root node

: Sensor node
 (legitimate)

: Attacker

A"acker	1	

A"acker	3	

Root	node	

6

7

8

4

1

A"acker	2	

: Primary
 routing path
: Alternate
 routing path

Fig. 11. Testbed topology map for the multihop scenario.

jams the first block of a packet and D1 recovers the packet
after about one retransmission. In the case of ‘middle A1’, the
attacker jams two blocks when the number of blocks is 2 or
4. It decrease the PRR of the D1 with 2 blocks to 0. If we
separate a packet into more blocks, the probability that more
blocks will be broken increases because the size of each block
becomes smaller. As a result, separating a packet into too few
blocks and too many blocks are both detrimental.

From the results in Fig. 9, a good empirical number of
blocks is 3. However, the optimal number of blocks (or block
sizes) also varies with the length of a jamming signal. Fig. 10
depicts the performance of D1 depending on the number of
blocks and the jamming length. If the length of a jamming
signal is under 15 bytes, all the PRR results show near 1
and ATX results are below 3. The reason that ATXs show
slightly larger value than 2 is that, in some cases, 2 blocks are
jammed and 2 retransmissions are required to recover them.
As the number of blocks increases, the block size becomes
smaller, and this increases the probability that 2 blocks are
broken. If the jamming length exceeds 25 bytes, PRRs drops
drastically when two blocks are used because the jamming
signal is long enough to jam both blocks. When the length
of the jamming signal is 35 bytes, the attacker even jams 3
blocks and decreases the PRR results of 2 and 3 block cases to
0. Thus, it is possible to recover from a long-length jamming
by dividing a block into many smaller blocks, but when the
jamming length is short, the probability that several blocks
will be broken increases and performance decreases.

B. Multihop Scenario

Studying jamming attacks and defense techniques under
multihop scenarios is important because the LLN routing
protocol (e.g. RPL [21] and its variants [22],[23],[24]) may (or
may not) act independently to avoid links that are problematic
depending on the attack type. For some attacks, upon detection
of insufficient packet delivery performance (e.g. ETX), the
routing protocol may naturally select an alternate link for its
routing path without any need for jamming defense. Of course,
this assumes that an alternate link exists. On the other hand,
for some other attacks, the routing protocol may not be able
to detect link failure and use the same path for an extended

amount of time unless some higher-layer action is performed.
Our evaluation in this subsection studies these cases.

To study the impact of jamming attacks on the performance
of Dodge-Jam in multihop network scenarios, we deployed an
LLN testbed as depicted in Fig. 11. There are 8 legitimate
LLN sender nodes (depicted in circles) and one sink node
(marked with a star) in an indoor environment. Solid arrows
depict a snapshot of the routing topology during one of our
baseline experiments, which shows a 3-hop network. This
routing topology is the outcome of RPL, the IETF standard
IPv6 Routing Protocol for Low-power and lossy networks [21],
with the default MRHOF objective function. At the beginning
of each experiment, we let RPL construct the routing topology
for 5 minutes. Once the routing paths have been established,
each legitimate LLN node sends 100 end-to-end data packets
to the root with an inter-packet interval of 30 seconds.

Using this testbed setup, we experiment with one attacker
at a time at three different locations for the attacker. The
first location (attacker 1) is close to the root, disrupting
communications between the root and two first-hop nodes
which forward all the traffic from their children nodes. For
this reason, we expect this attacker location to have the
most significant impact on network performance. The second
location (attacker 2) is located in the middle of the routing
tree and the network. It is expected to affect several links near
it. The last location (attacker 3) is farther away from the root,
closer to a leaf node which has the highest hop-distance to the
root, and interferes with links that are far away from the root.
This location is expected to have only limited impact on the
performance. The dotted arrows in Fig. 11 represent alternate
links that RPL nodes may select as their routing path towards
the root if they detect link failure.

Fig. 12 depicts the end-to-end PRR and the network-wide
ATX performance of the multihop RPL network with and
without Dodge-Jam. When calculating the network-wide ATX,
we take into account all transmissions including retransmis-
sions and forwardings, and divide it by the total number of
successfully received packets at the root. This network-wide
ATX indirectly shows how much extra effort, on average, was
needed by the network to deliver one end-to-end data packet
to the root.

The leftmost white bars demonstrate the results without any
attack, and shows that the PRR and the ATX of both baseline
(N0) and Dodge-Jam are near 1 and 2.5, respectively without
any attack. Attacker location 1 attacks both incoming links at
the root. Since all the packets must be delivered through these
two links, if the attacker act as reactive jamming (A1) or fake
ACK (A2) attacker, it affects the network (without Dodge-Jam)
significantly and decreases the PRR to almost zero, a complete
black-out. The ATX is drastically increased under all kinds of
attacks for this attacker location without Dodge-Jam.

In the case of attacker locations 2 and 3, there are alternate
links on which to send packets. Thus, if the attackers act
as reactive jammer (A1) or jamming ACK attacker (A3),
nodes will experience some packet losses, and will change
their routing path to send packets on as a natural parent

278

(a) PRR

(b) ATX

Fig. 12. Performance of Dodge-Jam in a multihop scenario with one attacker
at three different attacker locations.

selection process of the routing protocol. With Dodge-Jam,
as it recovers jammed packets under A1 or A2 while not
changing the routing path, the ATX results increase slightly
but Dodge-Jam increases the PRRs to near 1, which means
that it mostly does not lose packets. However, under fake
ACK attack (A2) without Dodge-Jam, nodes are unable to
detect link failures. Thus, nodes will repeatedly attempt to
transmit packets through jammed links. As can be seen in
Fig. 12(a), the PRR decreases considerably in the case of A2,
which indicates that the attacker adversely affects the nodes
near it and all the nodes in their subtree. On the other hand,
when Dodge-Jam is used, the PRR results are above 98%,
even for those cases with 0% PRR without Dodge-Jam. When
the network is under A3, the ATX results are decreased in all
cases compared to those without Dodge-Jam.

Our experimental results show that Dodge-Jam successfully
defeats all three attacks regardless of the attacker location, and
allows the network under attack to continue to operate and
communicate that would otherwise have been useless without
Dodge-Jam.

VII. CONCLUSION

In this paper, we have presented an anti-jamming technique,
termed Dodge-Jam, for low-power and lossy networks. It
is composed of ACK channel hopping, multi-ACK channel
hopping and multi-block data shift techniques to avoid stealthy
jamming attackers and recover packets from jammed transmis-
sions. We implement Dodge-Jam on real low-power embedded
devices, and evaluate its performance in both single-hop setup
and multihop wireless testbed. Our evaluation results show
that Dodge-Jam successfully defeats three types of stealthy
and energy-efficient jamming attackers, and recovers packet
reception ratio from 0% to over 98% in both single-hop and
multi-hop scenarios.

As our future work, we plan to study how Dodge-Jam
can defeat other types of attackers, analyze the impact and
performance of attackers and Dodge-Jam in terms of energy
consumption, and develop techniques to find the location of
attackers with the information obtained from the network.

REFERENCES

[1] M. Erol-Kantarci and H. T. Mouftah, “Wireless sensor networks for
cost-efficient residential energy management in the smart grid,” IEEE
Transactions on Smart Grid, vol. 2, no. 2, pp. 314–325, 2011.

[2] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “Market-
Net: An Asymmetric Transmission Power-based Wireless System for
Managing e-Price Tags in Markets,” in ACM SenSys, 2015.

[3] J. Paek, J. Hicks, S. Coe, and R. Govindan, “Image-Based Environmental
Monitoring Sensor Application Using an Embedded Wireless Sensor
Network,” Sensors, vol. 14, no. 9, pp. 15 981–16 002, 2014.

[4] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. Vieira,
J. Hicks, D. Estrin, R. Govindan, and E. Kohler, “The Tenet Architecture
for Tiered Sensor Networks,” ACM Transactions on Sensor Networks,
vol. 6, no. 4, pp. 34:1–34:44, Jul. 2010.

[5] A. D. Wood, J. A. Stankovic, and G. Zhou, “DEEJAM: Defeating
energy-efficient jamming in IEEE 802.15. 4-based wireless networks,”
in IEEE International Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks (SECON), June 2007, pp. 60–69.

[6] J. Ko, J. Lim, Y. Chen, R. Musaloiu-E., A. Terzis, G. Masson, T. Gao,
W. Destler, L. Selavo, and R. Dutton, “MEDiSN: Medical Emergency
Detection in Sensor Networks,” ACM Transactions on Embedded Com-
puting Systems (TECS), Special Issue on Wireless Health Systems, 2010.

[7] H. Huang, S. Xiao, X. Meng, and Y. Xiong, “A remote home security
system based on wireless sensor network and gsm technology,” in In-
ternational Conference on Networks Security Wireless Communications
and Trusted Computing (NSWCTC), 2010.

[8] S.-S. Chiang, C.-H. Huang, and K.-C. Chang, “A minimum hop routing
protocol for home security systems using wireless sensor networks,”
IEEE Transactions on Consumer Electronics, vol. 53, no. 4, 2007.

[9] Z. Lu, W. Wang, and C. Wang, “Hiding traffic with camouflage: Mini-
mizing message delay in the smart grid under jamming,” in INFOCOM,
2012.

[10] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in MobiHoc, 2005.

[11] Y. Xiao, S. Sethi, H.-H. Chen, and B. Sun, “Security services and
enhancements in the IEEE 802.15. 4 wireless sensor networks,” in IEEE
Global Telecommunications Conference (GlobeComm), 2005.

[12] Z. Zhang, J. Wu, J. Deng, and M. Qiu, “Jamming ACK attack to wireless
networks and a mitigation approach,” in IEEE Global Telecommunica-
tions Conference (GlobeComm), 2008.

[13] A. Dvir, L. Buttyan, and T. V. Thong, “SDTP+: Securing a distributed
transport protocol for WSNs using Merkle trees and Hash chains,” in
IEEE International Conference on Communications (ICC), 2013.

[14] M.-H. Park, “Challenge-response based ACK message authentication,”
Electronics letters, vol. 48, no. 16, pp. 1021–1023, 2012.

[15] D. Rossi, M. Omana, D. Giaffreda, and C. Metra, “Secure communica-
tion protocol for wireless sensor networks,” in 2010 East-West Design
Test Symposium (EWDTS), Sept 2010, pp. 17–20.

[16] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low
Power Wireless Research,” in Proceedings of IPSN/SPOTS, April 2005.

[17] F. Ashraf, Y. C. Hu, and R. H. Kravets, “Bankrupting the jammer in
WSN,” in IEEE International Conference on Mobile Ad-Hoc and Sensor
Systems (MASS), Oct 2012, pp. 317–325.

[18] Texas Instruments, “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver,” 2006.

[19] D. Moss and P. Levis, “BoX-MACs: Exploiting physical and link layer
boundaries in low-power networking,” Computer Systems Laboratory
Stanford University, pp. 116–119, 2008.

[20] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” in MobiCom,
Sep. 2003.

[21] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012.

[22] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load balancing under heavy
traffic in RPL routing protocol for low power and lossy networks,” IEEE
Transactions on Mobile Computing, vol. 16, no. 4, pp. 964–979, 2017.

[23] H.-S. Kim, J. Paek, D. E. Culler, and S. Bahk, “Do Not Lose Bandwidth:
Adaptive Transmission Power and Multihop Topology Control,” in IEEE
DCOSS’17, June 2017.

[24] H.-S. Kim, H. Im, M.-S. Lee, J. Paek, and S. Bahk, “A measurement
study of TCP over RPL in low-power and lossy networks,” Journal of
Communications and Networks, vol. 17, no. 6, pp. 647–655, 2015.

279

	Back to Contents:

