
LpGL: Low-power Graphics Library for Mobile AR Headsets
Jaewon Choi
Ajou Univerisity

Department of Computer Engineering
Republic of Korea

jainersoer@ajou.ac.kr

HyeonJung Park
Ajou University

Department of Computer Engineering
Republic of Korea

jhikm1003@ajou.ac.kr

Jeongyeup Paek
Chung-Ang University

School of Computer Science and
Engineering, Republic of Korea

jpaek@cau.ac.kr

Rajesh Krishna Balan
Singapore Management University
School of Information Systems

Singapore
rajesh@smu.edu.sg

JeongGil Ko
Ajou Univerisity

Department of Computer Engineering
Republic of Korea
jgko@ajou.ac.kr

ABSTRACT
We present LpGL, an OpenGL API compatible Low-power Graphics
Library for energy efficient AR headset applications. We first char-
acterize the power consumption patterns of a state of the art AR
headset, Magic Leap One, and empirically show that its internal
GPU is the most impactful and controllable energy consumer. Based
on the preliminary studies, we design LpGL so that it uses the de-
vice’s gaze/head orientation information and geometry data to infer
user perception information, intercepts application-level graphics
API calls, and employs frame rate control, mesh simplification, and
culling techniques to enhance energy efficiency of AR headsets
without detriment of user experience. Results from a comprehen-
sive set of controlled in-lab experiments and an IRB-approved user
study with 25 participants show that LpGL reduces up to ∼22% of
total energy usage while adding only 46µsec of latency per object
with close to no loss in subjective user experience.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Interactive systems and tools; • Computer systems or-
ganization → Embedded software.

KEYWORDS
Augmented Reality; Energy Efficiency; Mobile Headsets

ACM Reference Format:
Jaewon Choi, HyeonJung Park, Jeongyeup Paek, Rajesh Krishna Balan,
and JeongGil Ko. 2019. LpGL: Low-power Graphics Library for Mobile AR
Headsets. In The 17th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’19), June 17–21, 2019, Seoul, Republic of
Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3307334.
3326097

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326097

Figure 1: Study participant with Magic Leap One (a) with
scenes observed from baseline (b) and LpGL (c).

1 INTRODUCTION
Augmented reality (AR) applications are starting to be used in
various real-world application domains, ranging from industrial
engineering, clinical services, field repairs, to lifestyle manage-
ment [7, 13, 24, 26, 45]. To support these real-world on-site use cases,
mobile untethered AR headsets such as theMicrosoft HoloLens [21],
Google Glass [14], and Magic Leap One [25] are now commercially
available. Typically, these “untethered” mobile headsets differ from
tethered devices in that they are fully self-contained and have the
CPU, GPU, and networking capabilities to run full AR applications
without access to more powerful computing devices nearby. Thus,
they enable AR applications to be used in any location and envi-
ronment, allowing a much richer set of viable use cases.

The challenge is that untethered AR headsets are resource con-
strained mobile computing platforms. In particular, they are inten-
tionally designed to be lightweight and have minimal heat buildup.
As such, untethered AR headsets have limited battery capacity (to
reduce weight), and use less powerful CPU and GPUs (to reduce
power usage and heat), which can limit their usefulness in many
real-world use cases. For example, the Magic Leap One has only 2
to 3 hr usage time [25], which may not be sufficient for use cases
that do not allow for convenient access to recharging.

A key approach to maximize battery lifetime on mobile devices
involves reducing the fidelity of applications or hardware compo-
nents. However, these trade-offsmust be carefully managed to avoid
sacrificing user experience. In this paper, we present LpGL, a low-
power graphics library that automatically adjusts the resource usage
of AR apps to reduce power consumption significantly with mini-
mal loss of user experience. LpGL requires no application changes
as it abstracts all energy efficiency considerations in lower layers
that are invisible to user applications (Section 3). This is achieved

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

155

https://doi.org/10.1145/3307334.3326097
https://doi.org/10.1145/3307334.3326097
https://doi.org/10.1145/3307334.3326097

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

by re-writing, re-ordering, and selectively executing API requests
in the underlying LpGL layer based on user perception.

Specifically, LpGL uses gaze/head orientation and 3D object ge-
ometry data to obtain user perception information, and combines
three main techniques to reduce power consumption of applications
while preserving usability;

(1) Dynamics score calculation for frame rate scaling,
(2) Mesh simplification for reducing the projected 3D object’s com-

plexity, and
(3) Culling for reducing draw call counts to minimize power con-

sumption without impacting user experience.

These techniques operate based on the key user and mobility infor-
mation provided by the AR device to enact its final power savings
configuration. In particular, LpGL uses (a) dynamic head and eye
tracking of where the user is looking at currently, and (b) the se-
lected power usage profile (off, normal, high, etc.) to achieve an
output that saves a high amount of power with minimal impact on
the usability of the mobile AR application.

The primary goal of this work is to provide a solution that would
work across various AR headsets – regardless of their manufacturer
and software setup. As such, we focused on adapting software and
device aspects only those that are accessible across all AR headset
devices we surveyed (Section 2.1). From our survey, we found that
most AR devices use proprietary software that provides limited
access to the hardware of the AR device. In particular, the head,
eye, hand, and inertial tracking subsystems of these AR devices
were not easily modifiable – you could read their values easily
but there was no access to change their settings to, for example,
implement a duty cycling scheme. However, all the surveyed devices
provided OpenGL graphics libraries that allowed good access to the
rendering subsystems. Thus, to be as device independent as possible,
we focused our efforts primarily on the rendering subsystems (while
using inputs from the sensing components to drive our adaptation)
and defer adaptation of other energy-consuming components to
future work – or such a time where easy access to these subsystems
becomes possible.

For this reason, LpGL provides an OpenGL compatible graphics
API wrapper that is used to modify the application’s OpenGL API
calls to output a modified command set that reduces system-level
power consumption. This allows LpGL to be highly device- and
application- independent, and as transparent as possible to both
applications and users. Note: users may see a different output when
LpGL is enabled (especially if more aggressive power saving modes
are selected) – however this new output is still sufficient and accept-
able for the task the user is performing and minimally disturbing
within the user’s core focal angle. Figure 1 shows a sample scene
presented using the baseline and LpGL.

We implemented LpGL on the Magic Leap One [25] (Section 4)
and conducted an extensive set of in-lab experiments to evaluate
its system-level performance under various configurations. In ad-
dition, we performed an IRB-approved user study with 25 student
participants to understand the usability impact of LpGL (Section 5).
Our results from in-lab experiments and the user study show that
LpGL reduces the power usage by as much as ∼22% with only mar-
ginal (∼46µsec) added latency per displayed object on a frame and

minimal loss in subjective user experience levels. This power reduc-
tion translates to achieving 3.9 hours of continuous system lifetime,
compared to 3.0 hours when using the baseline graphics library
directly. Furthermore, our experiments show that LpGL results in
similar or lower device temperature with the baseline approach
while achieving higher frame rates.

The major contributions of this paper are as follows:

• To the best of our knowledge, this work presents the first detailed
power measurement of the Magic Leap One, a commercial AR
device, to inform and guide the design of LpGL.

• Combining mobility features with rendering techniques to allow
LpGL to reduce energy costs from GPU and memory usage in a
scalable and generally applicable manner.

• Detailed in-lab power and device temperature measurements
showing the efficacy of LpGL.

• Results from a 25 participant user study showing that LpGL does
not impact usability, accuracy, nor task times.

The remainder of this paper is structured as follows. In Section 2,
we show our preliminary studies on the power consumption mea-
surements of the Magic Leap One AR platform. Next, in Section 3,
we present LpGL and its system architecture with design consid-
erations based on the results obtained from the preliminary study.
In Sections 4 and 5, we validate our system’s efficacy in terms of
performance measures (e.g. power consumption, latency and heat)
and user satisfaction levels in controlled setting and through a user
study, respectively. Section 6 deals with opportunities, limitations
and future directions of LpGL. Finally, we introduce related work
in Section 7 and conclude the paper in Section 8.

2 PRELIMINARY STUDY: AR HEADSETS
2.1 Background
In this work, we are developing power management solutions for
untethered mobile AR headsets, and base our approach on two
core characteristics of these types of headsets - (1) the variable
scene sparsity, and (2) the ever changing user perception. A key
difference of dedicated AR headsets is that, unlike virtual reality
(VR) applications and mobile phone-based AR applications, AR
headsets do not need to render backgrounds. In particular, VR or
phone applications require the system to draw a virtual background,
and mobile AR applications need to overlay images captured from
the video camera on the screen. However for AR headsets, the user
directly observes “reality” through a translucent lens, and only the
virtual objects (e.g. 3D models) are augmented on the scene with
an empty background. As a result, the problem scope of energy
efficient object rendering is different from full-screen rendering
systems. In addition, unlike tethered devices, untethered headsets
have to perform the computationally expensive rendering process
on the mobile device itself rather than on a nearby PC and simply
displays the content on the display.

Another key characteristic of mobile AR headsets is that they
require some form of orientation or user perception information. For
example, devices such as the Hololens exploit gyroscope-based head
orientation data and the Magic Leap One offers both gyroscope
and gaze tracking data. These sensors inform the device on what
direction the user’s visual attention is focused towards and what

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

156

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

they are paying attention to. This is important as the device needs
to understand where to focus its limited computational power on.

Finally, as stated in the introduction, most commercial unteth-
ered AR headsets are currently being released as “closed” platforms
where a large amount of the software and sensors running the
device is not accessible to third-party developers, making it difficult
to access low level information and optimize system performance.
For example, the Magic Leap One uses its Lumin OS [25], which
is a sandboxed platform that provides limited access to low level
information – thus limiting what third-party programs can do for
performance enhancement. This is similar to the HoloLens [21]
which uses the Universal Windows Platform (UWP) [37]. Naturally,
this complicates the design and implementation of optimization
approaches for most (even experienced) developers and suggests
the need for an underlying layer to optimize the energy usage
silently and obliviously to the application. Fortunately, in all cases,
we found that AR devices all supported OpenGL. Thus, we chose to
implement our performance improvements in the OpenGL layer as
way of achieving cross-device compatibility – albeit at the loss of
access to sensors and information, such as the eye and gaze tracking
hardware, not accessible through graphics library APIs.

2.2 Detailed Power Measurements
We next performed a detailed study to understand the power usage
characteristics of the Magic Leap One commercial untethered AR
headset. This is a representative of typical untethered AR headsets
and consists of three core components: computation, display, and
networking. Our goal was to identify the power consumption of
each component under various workloads and use these results to
focus our power conservation solutions.

The Magic Leap One consists of two major (portable) compo-
nents: the headset and the computation device. The headset con-
tains a liquid crystal on silicon (LCoS) display, offering a fixed
1280x960 resolution, with a gaze tracking device and IMU sensors.
The computational device, which is wired to the headset, contains
an Nvidia Tegra X2 SoC with two Denver 2.0 64-bit cores and four
ARM Cortex A57 64-bit core. It also contains an integrated Pascal-
based GPU with 256 CUDA cores, with 8 GBs of RAM. Finally, the
computation device also contains a Murata 802.11 ac/b/g/n and
Bluetooth 4.0 chipset. We could not find any detailed breakdowns
of recently-released untethered AR headsets’ power consumption.
Thus, this preliminary study is also a good reference for other re-
searchers wanting to optimize power consumption of AR devices.
To perform this preliminary study, we ran tasks that used different
system configurations (e.g., object complexity, display configura-
tions, and network data rate), and measured the power usage of
each component using the Magic Leap One developer interface.
Unless explicitly specified, the frame rate was set to 60 frames per
second (fps), the default for Magic Leap One. Prior to our studies, we
validated the accuracy of the Magic Leap One power measurement
tool to confirm that its measurements match the device’s actual
operation lifetime.

2.3 Minimum and Maximum Power Usage
We first performed a simple experiment to measure the minimum
and maximum power consumption on the Magic Leap One. For

 6

 8

 10

 12

 14

 16

Min Max

Po
w

er
 u

sa
ge

 (
W

)

(a) Total power con-
sumption

 0
 1
 2
 3
 4
 5
 6
 7

Min Max

Po
w

er
 u

sa
ge

 (
W

)

CPU
GPU

RAM
SoC

Wifi
Headset

(b) Per-component power consumption

Figure 2: Power usage breakdown for minimum and maxi-
mum performance cases on the Magic Leap One.

the minimum case, after switching on the device, we displayed
no content, the controller was not connected to the headset, and
all computing and networking features were disabled except for
the always-on baseline functionality. For measuring the maximum
power usage, we set the device to render at maximum rate (1.0M
polygons at 60 FPS), send packets at full line rate (∼14 MB/s over
UDP), and connected the controller to the headset via Bluetooth.
Figure 2 plots detailed power measurements for the two extreme
cases. We observe that at the maximum, the power consumption
increased by more than 110% compared to the minimum case. Fur-
thermore, we notice that the headset, which includes sensors for
gaze tracking, gyroscope, and the LCoS display, dominates the
power usage. Even though the headset is consuming nearly 42% of
the total power usage when operating at maximum, unfortunately,
like many commercially available AR headsets, the Magic Leap One
does not allow developers to control headset sensors’ parameters
(such as enforcing an energy-optimized duty cycling).

Fortunately, even without the headset, the computational units
including all the processors and networking interfaces still con-
sumes, compared to minimum case, as much as 6.5 W more and
∼58% of the total system power. Thus, optimizing the power con-
sumption of the computational unit can still result in significant
power savings and increased usage time of the AR device. For exam-
ple, we found that the Magic Leap One, using its 36.7 Wh battery,
could only run for about 2.4 hours at the maximum power usage
configuration and for 5.1 hours with the minimum configuration.

2.4 Graphics Rendering Components
We first look into the impact the graphics components of the Magic
Leap One has on the overall power usage. A typical “graphics
pipeline”, in this case for AR devices, consists of computationally
heavy operations (e.g., matrix computation and rasterization) that
use source information representing 3D objects (e.g. triangle and
texture information) and output rendered 2D images. For seamless
user experience, the rendering pipeline should run at 60 fps or
higher. However, this high fps requires a large amount of computa-
tion, which in turn requires a lot of power usage.

Beforemeasuring the power consumption of the graphics pipeline,
we first explain how applications interact with the graphics ren-
dering libraries. To render a specific geometry (e.g., 3D object), a
typical application will need to send three types of information to
the graphics API: (1) vertices and their topology information, (2)

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

157

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

Figure 3: The Stanford Bunny [44] in four different resolu-
tions, with different number of triangles.

 6

 8

 10

 12

 14

 16

69 138 277 555

Po
w

er
 u

sa
ge

 (
W

)

Number of triangles (K)

Shading
No shading

(a) Total consumption

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

69 138 277 555

Po
w

er
 u

sa
ge

 (
W

)

Number of triangles (K)

GPU
RAM

(b) GPU and memory with shading

Figure 4: Power consumption plots for varying object com-
plexity (object triangle count).

transformation matrix of a model, and (3) command to draw the
object (i.e., draw call).

Number of vertices: To quantify the power consumption for dif-
ferent number of vertices, we use the widely used Stanford Bunny
model (Figure 3) [44] in four different resolutions. The left-most
bunny in Figure 3 is the full resolution object containing 69K trian-
gles, with the subsequent bunnies containing 16K, 3.7K, and 900
triangles, respectively. Note: a triangle is a basic mesh object, com-
prised of multiple vertices, that is used to create the final 3D object
– the more triangles used, the more realistic and smoother the final
object will appear to the users.

The power consumption results in Figure 4(a) for rendering these
four bunnies suggests that the Magic Leap One consumes a fixed
amount of power (∼10 W) to render up to 138K triangles. Beyond
this point, the power consumption starts to increase. We also ob-
serve that the shading process consumes a significant amount of
power. Quantitatively, when increasing the object complexity from
69K to 555K triangles, we observed a 3.6 W (35%) increase with
shading enabled, and a 1.8 W (17%) increase without shading. From
Figure 4(b), which plots the GPU and memory usage for different
object complexities with shading (the most impactful components
in this setting), we observed that the power consumption increase
is caused by the additional GPU and memory usage – with the
GPU, by itself, consuming nearly 4x more power as the complexity
increases. These results suggest that controlling the number of ver-
tices in the 3D object model (to reduce image complexity) can be
an effective strategy in lowering the device’s power usage.

Number of draw calls: Next, we examined the case wheremultiple
objects are drawn on a single scene – i.e., when multiple draw
calls are issued. To test this, we issued up to 32 draw calls using a
Stanford Bunny with 3.7K triangles. Figure 5 presents the power

 6

 8

 10

 12

 14

1 4 8 16 32

Po
w

er
 u

sa
ge

 (
W

)

Number of draw calls

Total

(a) Total consumption

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 4 8 16 32

Po
w

er
 u

sa
ge

 (
W

)

Number of draw calls

GPU
RAM

(b) Power breakdown

Figure 5: Power consumption for varying number of draw
calls (e.g., objects) at 60 fps.

 8
 10
 12
 14
 16

15 30 60

Po
w

er
 u

sa
ge

 (
W

)

Frame rate (FPS)

of draw calls = 4
of draw calls = 8

of draw calls = 16
of draw calls = 32

Figure 6: Power consumption for rendering the 69K-
triangles Stanford Bunny with varying frame rates.

consumption for this test. We observed that increasing the number
of draw calls from 1 to 32 resulted in a∼31% increase in power. From
Figure 5(b), we observed that this increase is (mostly) due to the GPU
and memory power usage. Note: when the number of draw calls
reached 16 and 32 (16 and 32 bunnies on the screen), the 60 fps target
could no longer be achieved (44 and 24 fps achieved, respectively)
and we observed a cap on the total power consumption.

Screen complexity and frame rate: Figures 4 and 5 together
provide us hints on how power usage can be effectively reduced on
untethered AR headsets. As shown previously, a scene that requires
many triangles, either due to a single complex object or many
simpler objects, will result in high power usage. This suggests that
controlling the frame rate can impact the system’s power efficiency.
In particular, high frame rates will require more pipeline iterations
and draw calls within a given time interval, which will heavily
impact the system’s power consumption. This is shown in Figure 6
where we display 16K-triangle Stanford Bunnies using 15, 30, and
60 fps with 4, 8, 16, and 32 draw calls. We observed that as the
overall complexity of the scene increases, the total power usage
increases and saturates at ∼13 W.

2.5 Display
A major power consuming component on mobile devices is consid-
ered to be the display [4, 8]. TheMagic Leap One uses LCoS displays,
which could have very different power usage patterns from prior
work studying LCD-based phone displays [23] and OLED-based
displays [47].

An LCoS display is a micro-display that uses a ferroelectric
liquid crystal layer, containing individual electrodes, on top of a
silicon backplane. A CMOS chip controlling the electrode voltages
is installed below the chip surface. A common base voltage for

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

158

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

1 25 50 100

Po
w

er
 u

sa
ge

 (
W

)

Brightness (%)

Total

(a) Total power

 5

 5.5

 6

 6.5

 7

1 25 50 100
Po

w
er

 u
sa

ge
 (

W
)

Brightness (%)

Headset

(b) Headset power

Figure 7: Impact of screen brightness on
power consumption

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

1/8 1/4 1/2 1

Po
w

er
 u

sa
ge

 (
W

)

Ratio covering screen

Total

(a) Total power

 0

 0.5

 1

 1.5

 2

1/8 1/4 1/2 1

Po
w

er
 u

sa
ge

 (
W

)

Ratio covering screen

GPU
RAM

(b) GPU/memory power

Figure 8: Impact of object size on power
consumption

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

1 8 10 12 14

Po
w

er
 u

sa
ge

 (
W

)

Datarate (MB/s)

Total

(a) Total power

 0

 0.5

 1

 1.5

 2

1 8 10 12 14

Po
w

er
 u

sa
ge

 (
W

)

Datarate (MB/s)

CPU
Wifi

(b) WiFi module power

Figure 9: Impact of network data rate on
power consumption

all the electrodes is supplied by a glass cover sitting on top. Such
display technologies are also used in the Microsoft Hololens and
the Google Glass [29].

To understand the power consumption of the display, we per-
formed two experiments where we changed the (1) display bright-
ness and (2) object size. To study the impact of brightness, we con-
figured the Magic Leap One to show a pure white full screen image
with different brightness. Figure 7 plots the power usage for bright-
ness levels from 1-100%.

We observed that the headset’s power consumption increases as
the brightness increases. The difference in power usage between
the lowest and highest brightness levels was ∼0.9 W (9% increase).
This suggests that dynamically adjusting brightness can potentially
improve the system lifetime [27]. However, currently for the Magic
Leap One, the brightness setting can only be configured manually
by the user and cannot be adjusted automatically by applications
or on a per-object basis. Thus, while schemes to reduce brightness
can improve the power consumption, we cannot use them in our
specific implementation for Magic Leap One.

Figure 8 plots the power consumption when displaying different-
sized solid squares on Magic Leap One at maximum brightness
level. We observed that as object size increases from 1/8 of the
screen to 100%, there was a ∼7% increase in total power usage.
Most of this was from increased power consumption by the GPU
and memory components due to larger objects being rendered on
the screen. We chose not to dynamically reduce the object sizes
in our implementation, even though it could save power, as our
studies revealed that users would quickly notice size differences
between objects.

2.6 Wireless Networking
Finally, the wireless networking component is often considered
to be a major power consumer in mobile systems with a number
of solutions proposed to reduce its energy/power consumption [3,
31, 40]. To investigate the impact of the networking module in
mobile AR headsets, we connected the Magic Leap One to a nearby
WiFi AP and transmitted packets at data rates of 1MB/s, 8MB/s,
10MB/s, 12MB/s and 14 MB/s, respectively, over UDP, to a nearby
sync server. Note that all other computational features were turned
off, only with an empty white screen on the display.

The results in Figure 9, indicate that power consumption in-
creases by ∼1 W as the data rate increases from 1MB/s to 14MB/s,
andmost of this increase is due to the CPU andWiFi modules. In this

paper, we do not provide any schemes to optimize the power con-
sumption of the wireless networking component for two main rea-
sons; (1) there are already many proposed techniques [1, 9, 38, 39]
that we could reuse, and (2) more importantly, our survey of AR ap-
plications revealed that very few used the networking component
in any significant way. Thus we focused our efforts on reducing
the energy consumption of always-used components instead.

2.7 Summary
Our preliminary study using the Magic Leap One suggests that a
3D object’s geometric attributes, such as the object complexity and
the frame complexity, along with the frame rate of the application,
are crucial (and controllable) factors in modifying the energy usage
of untethered AR headsets. In the next sections, we show how we
design and evaluate a solution that uses these insights to effectively
increase the battery lifetime of these devices.

3 LOW-POWER GRAPHICS LIBRARY
The results from our preliminary studies suggest that a combina-
tion of various geometric attributes (e.g. number of triangles and
draw calls) and system-level parameters (e.g., frame rate) need to
be considered when optimizing the AR application’s graphics ren-
dering requests for power efficiency. Moreover, if there are several
3D objects to be displayed, each object may need to be optimized
separately depending on their texture or motion characteristics.
Managing this individually for each application may be a significant
burden and learning curve for the developers. Therefore, having a
dedicated library implementation that manages object rendering,
while considering various power-affecting factors, can be beneficial
for mobile AR application development. Such operations should be
kept transparent to the application, the added computation should
be minimal, and should take in consideration the user perceived
object quality. To this end, we summarize the design goals of a
low-power graphics library for mobile AR headsets as follows:
• Maintain a transparent pass-through layer between the native
graphics library and the application for various programs to
easily inter-connect without putting the responsibility on the
application developer.

• Light-weight and computationally tractable schemes are needed
to assure that power and resource usage of the implementation
does not outweigh its power savings.

• Manage 3D object display based on how the user perceives (both
the physical visibility and quality) the AR environment. While
achieving power-savings is attractive, maintaining application
quality is still important.

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

159

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

LpGL Build Phase LpGL Operation Phase

Mesh Reduction API

A
pp

lic
at

io
n

Simplification
Level Matching

Suppress
Rendering

Frame Rate
Scaling

Rendering and
Display on Native

Graphics API

(OpenGL, DirectX)

Scene
Dynamics
Evaluation

Original
Mesh

Reduced
Mesh Set

(Meta-mesh)
Culled? N

Y

Figure 10: LpGL – the architecture and its functions. The na-
tive graphics APIs of LpGL is implemented on OpenGL and
DirectX 11.

With these goals in mind, we design LpGL, a Low-power Graph-
ics Library for mobile AR headset applications. In the software
stack, LpGL is positioned between the application and the system’s
native graphics library (e.g., OpenGL ES, DirectX) (Figure 10). To
the application, LpGL provides OpenGL compatible front-end APIs
with OpenGL ES and DirectX implementations as a back-end native
graphics API. For an application that uses these APIs, LpGL inter-
cepts the graphics-related calls to understand what the application
targets to draw (e.g., type/location of drawing, quantity of mod-
els). In addition, LpGL obtains user view points from the headset
to gather user perception physics (e.g. angle of sight, gaze). Then,
these information are combined to optimize the drawing process
with respect to other system parameters, such as the frame rate
and geometric complexity, so that power usage is reduced while
minimizing user perceived quality loss. The following subsections
provide details on the LpGL design.

3.1 LpGL Front-end APIs
Front-end APIs of LpGL are designed to be compatible with the
OpenGL APIs [17]. This results in no changes to the application’s
code and allows LpGL to easily intercept and capture the contents
to be drawn on the display. Through the APIs, LpGL hooks to the
graphics-related calls from the application and passes appropriate
information to its sub-modules for further processing, prior to
sending commands to the system’s native graphic library.

To achieve this transparency, we design our software so that all
LpGL functionality are enabled through compiler configurations.
The application developer simply makes changes to the compiler
configurations to use LpGL, and at compile time, the source code
binary and necessary 3D objects are modified to support the added
features of LpGL. These, compile time configurations allow LpGL
to intercept all graphics-related calls prior to entering the native
graphics stack. Specifically, through this process we (1) initialize
LpGL, (2) configure a command queue in which application API
calls can be gathered before being pushed to the system graphics
stack, and (3) load a mesh with different complexities to perform
mesh simplification as we will detail in Section 3.2.

OpenGL-compatible front-end APIs supported in LpGL consists
of three parts: APIs for initializing the drawing data, transform-
ing the geometric objects, and APIs for the actual drawing. The
following presents a subset of the APIs that LpGL supports.

Initialization APIs: The initialization APIs contain informa-
tion on what objects will be drawn, including vertices and topology
information (e.g. glBufferData(), glVertexAttribPointer()). These
APIs allocate space on the GPU Video RAM (VRAM) and store

graphics-related data such such as geometry, image or transforma-
tions on the reserved buffers.

Transformation APIs: Transformation APIs apply geometric
transformation (scaling, rotation and translation) to the target ob-
ject using call such as glScale3f(), glRotate3f() and glTranslate3f().
Furthermore, transformations in LpGL can be composed with ma-
trix stacking APIs as well (e.g. glPushMatrix(), glPopMatrix()).

Draw call APIs: Draw call APIs send commands to draw objects
to the GPU by indicating the geometry buffer and passing a flag to
notate the objects’ topological structures such as points, lines or
triangles (e.g. glDrawArrays(), glDrawElements()).

Our current LpGL implementation provides essential APIs for
“fixed pipeline” rendering. We are aware that more recent graphics
programming uses the “shader”. We plan to support this in our
next design of LpGL and position this work to validate the effec-
tiveness of different graphics pipeline optimization technologies
with respect to power-efficiency.

3.2 Mesh Simplification
As we saw in the preliminary studies, the number of triangles that
consist a 3D object (i.e., object complexity) heavily impacts the
power usage of a mobile AR application. However, when displaying
multiple complex objects in a single scene, often the user’s percep-
tion (e.g., direction of sight or gaze) is towards only a subset of the
objects. Therefore, it makes sense to simplify objects that are out
of the user’s focal angle to minimize the power used for processing
these objects.

To do so, we start by identifying the number of triangles that an
application intends to draw using the glBufferData() call and the
glVertexAttribPointer() call in the OpenGL APIs, which provides
vertices and topology information.

Next, to reduce the number of triangles that consist an object
while maintaining visible quality, we apply mesh simplification.
Mesh simplification is used in various graphics applications to min-
imize computation costs for less-focused objects. Among various
methods, we used Audodesk Maya’s Mesh Reduction API [33].

However, mesh simplification can be computationally heavy
when performed on the mobile headset itself. Therefore, all po-
tentially displayed objects in LpGL are simplified in compile time
(on the development PC once) to create two additional versions of
simplified meshes. Here, one version is a “less” simplified version
(level 1 simplification) and the other is heavily simplified (level 2).
For simple memory loading, the geometries of the original, level
1 and level 2 simplification meshes are combined to form a “meta-
mesh” of an object. We note that some applications dynamically
load 3D objects in run-time. To reduce object complexity for those
not simplified in compile time, LpGL also includes a light-weight
mesh simplification scheme based on Quadric Error Metrics [12] to
reduce mesh complexities in run-time.

In operation, the meta-mesh of the target object is loaded to
the memory upon a display request. As soon as a decision is made
on what version of the object should be displayed, the meta-mesh
is split, and only the geometry for the target complexity mesh is
passed to the GPU.

In determining when and what version of the object will be
displayed, we utilize gaze tracking or head orientation information

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

160

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

provided by the mobile headset. Based on geometric information on
how far an object is away from the user’s focal point, we divide the
user’s field of view (FOV) in three: core focal angle, near peripheral
sight, and far peripheral sight. Assuming that the user’s core focal
angle is within ϵ◦ from the current focal point extracted from the
gaze tracker or head orientation information, objects beyond this
angle distance can be simplified. If the object is located 1-3×ϵ◦
away from the focal point, we present the level 1 simplified mesh,
and use level 2 for all objects farther away. Based on findings from
previous literature [41], we set ϵ◦ to 10◦ and validate this using
experiments in Section 4.

3.3 Frame Rate Control
Our preliminary results show that frame rate has significant impact
on the system’s overall power usage. However, frame rate control
should be done with care, since low frame rates may drastically drop
the user perceived application/scene quality. Frame rate control in
LpGL is designed based on the intuition that frame rate need not
be constant across all visual contents [30]. It should be kept high to
maintain the original quality for contents that change frequently
(e.g., high level of scene dynamics), but can be lowered without
loss of user-perceived quality when contents are less dynamic. To
exploit this idea, LpGL implements a Scene Dynamics ScoringModule,
which determines and quantifies the dynamics of frame contents
using the scene’s geometric information. Based on this score, the
Reactive Display Complexity Control Engine (Section 3.5) determines
an appropriate frame rate.

For example, if we define a scene’s dynamics as the difference
between subsequent frames, image-based schemes that use full
contextual information, such as the structural similarity (SSIM) or
peak signal-to-noise ratio (PSNR) can be used [46, 48]. However,
they require significant amount of computation to calculate features
from the entire screen, and thus unsuitable for resource limited
mobile devices [23, 46]. Furthermore, with these schemes, it is
difficult to compute scene dynamics until the frame is fully rendered
for object rendering applications. We find this and the memory copy
from the GPU’s frame buffer as computational waste.

Moreover, image-based metrics may not be sensitive enough for
small portions of changes in the scene. Take a case in which a small
object such as a bullet passes through the user’s scene. The bullet
will travel fast, but if we compute the SSIM/PSNR for the entire
frame, the contextual changes will only be marginal. Such schemes
can suggest that there is only a small level of dynamics and decrease
the frame rate accordingly. In applications where drawing is done
on an object-basis, we need a scheme more centered towards the
objects themselves, rather than the entire frame image.

Such observations led us to propose and design a Distance-based
frame dynamics scoring module, an object geometry-based light-
weight approach for determining scene dynamics. In our approach,
the scene dynamics is defined as the maximum distance change of
objects within two consecutive frames computed over all objects
in the scene. Note that this distance is defined on the user’s view
point perspective. Therefore, even when the object is stationary
and the user’s view point changes (e.g., motions with the mobile AR
device), the dynamics can be captured. To minimize computation
costs, instead of using the original detailed coordinates of the 3D

object, we set a “bounding-box”, which is a box that best fits all the
coordinates of the original object, and only compute the distance
based on the box’s center point. Such an approach allows LpGL
to compute the dynamics level of the scene before the scene is
rendered, to suppress any unnecessary rendering and memory
copy operations.

3.4 Culling
In addition to frame rate, the number of draw calls also impact the
power consumption of a mobile AR headset. Issuing draw calls are
essential for drawing objects to the display, but executing draw calls
for objects that cannot be physically seen (e.g., object out of current
scene boundaries) would be a waste. Most widely used graphics
pipelines already exploit “view frustum culling” to account for such
cases [2, 5, 22]. Specifically, the culling process determines whether
or not there is a chance for the target object to be observed and
suppresses the drawing of the object if not.

While culling itself is already widely used, we’ve identified a
point in which the main philosophy of “not processing unseen
objects” can be further exploited to reduce power consumption
even more. In currently used view frustum culling, when a user is
observing an object in the x◦ field, objects in the x + 180◦ range
will still be processed and pay the computation cost up to the point
where the object geometries are known to the graphics library after
being fully transformed to the 3D space. However, objects beyond
peripheral vision can not be seen, and we propose to eliminate all
the waste in the culling process.

Again, we exploit the user perception data, geometry information
of all objects, and apply the bounding box-based approach. By doing
so, instead of transforming all vertices to the 3D space, we can
selectively transform just the eight corner points that consist the
bounding box. We infer the user’s position in the 360◦ space, and
use it to compute the angular distance τ ◦ between the user’s view
point direction vector and the vector of the object bounding box’s
center position. Then, given a typical user’s maximum FOV, if τ ◦ is
not included in the FOV, we determine that there is no chance for
the target object to be seen in the current scene. Using this simple
method, LpGL improves view frustum culling and suppresses the
entire graphics pipeline process.

3.5 Reactive Display Complexity Control
The mesh simplification, scene dynamics scoring, and culling tech-
niques discussed until now are designed based on the idea that we
can utilize the relationship between the user’s view point (from the
gaze tracker) and the object’s geometry. To effectively combine all
LpGL features, we design the Reactive Display Complexity Control
(RDCC) engine. The RDCC engine offers a framework that exploits
the three core features of LpGL with minimal computational over-
head, and provides a fine-grained display control environment.
Through RDCC, LpGL reactively controls graphics-related parame-
ters based on the user’s perception of the scene.

A key idea of the RDCC engine in LpGL is to focus the computa-
tion on only the bounding-box surrounding the geometry rather
than the full geometric information. Take the culling process for ex-
ample, which is interested in identifying whether the target object
is within the user perceived scene or not. Given that the bounding

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

161

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

None 80 75 70 65 60

Po
w

er
 u

sa
ge

 (
W

)

Culling angle (°)

Total

(a) Total power usage

 0

 0.5

 1

 1.5

 2

 2.5

 3

None 80 75 70 65 60
Po

w
er

 u
sa

ge
 (

W
)

Culling angle (°)

GPU
RAM

(b) GPU/memory power usage

Figure 11: Power consumption for enabling LpGL’s culling
at different angles.

box provides the minimum and maximum points of the object, if we
simply identify that the bounding box is outside the user’s sight, we
can easily remove this object from the graphics pipeline. Similarly
for frame rate control and mesh simplification, the RDCC engine
makes its decisions based on features (e.g., scene dynamics or object
position) extracted from the bounding box.

Overall, RDCC operates as follows. For each object draw call,
the culling process first takes place after identifying the object’s
bounding box. Then a mesh of a proper detail (e.g., original object
or simplified mesh) is presented after determining that the object is
currently within the core focal angle or near the peripheral angle.
Finally, the target frame rate is configured based on the objects’
dynamics in the scene to project them through the native graphics
library’s drawing APIs.

4 IN-LAB EXPERIMENTS
We start our evaluations of LpGL using controlled in-lab experi-
ments to analyze and understand the performance of LpGL under
different experimental settings. Specifically, we measure the power
usage for different culling angles, focal angles, and motion dynam-
ics to capture the impact of each LpGL feature, (1) culling, (2) mesh
simplification, and (3) screen dynamics-based frame rate control,
respectively. We also gathered qualitative measurements using a
small-scale user study of five participants to understand how param-
eter changes in the three criteria affects the perceived object quality
to determine the appropriate values for our application-oriented
user studies (discussed in Section 5).

4.1 Culling Angle
To identify the optimal culling angle for the Magic Leap One, we
first built an application to display 72 small bunnies horizontally
with the center bunny (right in front of the user’s field of view)
colored in green and the other 71 colored in white, arranged evenly
in a 360◦ circle around the participant – with each bunny separated
by its neighbor by 360/72 = 5◦. During the experiment, we asked
each participant to focus their attention on the green bunny and
inform us when they noticed something changing in the scene.
We then slowly removed bunnies from the scene starting with
the leftmost and rightmost bunnies (they were always removed in
matching pairs) until the participant noticed something changing
in their visible scene.

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

None 12 10 8 6 4
 0

 1

 2

 3

 4

 5

Po
w

er
 u

sa
ge

 (
W

)

5-
po

in
t

lik
er

t
sc

al
e

Focal angle (°)

Total
User perception

(a) Total power usage and 5-point Likert-
scale score on scene quality

 0

 0.5

 1

 1.5

 2

 2.5

 3

None 12 10 8 6 4

Po
w

er
 u

sa
ge

 (
W

)

Focal angle (°)

GPU
RAM

(b) GPU/memory usage

Figure 12: Power consumption and scene quality perception
scores for varying core focal angles.

This experiment was designed to identify the visual angle at
which participants could notice changes to the scene with their
peripheral vision. This angle is important to know as objects outside
this noticeable area can be culled by LpGL (i.e. not rendered) to
save power. On the Magic Leap One, the effective maximum field
of view is 80◦ – thus we started our tests from 80◦, as anything
larger would not be visible anyway (as the Magic Leap One would
not display it).

Figure 11 shows the reduction in power consumption as the
culling angle moves from “None” to 80◦ and lower. We observe that,
depending on the scene complexity, significant amounts of power
(20% or more) can be saved by not rendering objects that cannot
be seen by the user. However, this culling has to be balanced with
usability. From our study we noticed that, due to the small field of
view of the Magic Leap One, any culling in the visible area was
immediately noticed by the participants. Thus, despite increased
power savings potential, to maintain the user experience, we set
the culling angle for the Magic Leap One to 80◦ (to match its small
field of view) in all future experiments.

4.2 Focal Angle
LpGL defines two types of focal angles: peripheral focal angle and
core focal angle. For objects that are farther away than the peripheral
focal angle, a very simple mesh is presented (level 2 simplification),
and for objects within the core focal angle the highest quality mesh
is presented. If the object is located between these two angles, a
level 1 simplified mesh is displayed. We set the peripheral focal
angle to 60◦ based on findings from previous literature [6, 16],
and used the culling angle application to understand the impact of
changing the core focal angle on the power and user perception.
For this experiment, we placed the bunnies 2◦ apart to observe the
effects at finer granularity.

During the study, we randomly set the core focal angle to differ-
ent values and asked the participants to focus on the green bunny
in the center and rank the quality of the scene using a 5-point Likert
scale (very low: 1, very good: 5). With decreasing core focal angles,
the bunnies that are located close to the user-focused green bunny
will start to be presented as a simplified mesh. Our results, shown
in Figure 12 for both power consumption and user perceived qual-
ity, suggest that the participants started to quickly notice changes
when the core focal angle was smaller than 10◦. Again, similar to

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

162

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

 9

 9.5

 10

 10.5

 11

 11.5

 12

Base 0.25 1 4 16
 0

 15

 30

 45

 60

 75

 90

Po
w

er
 u

sa
ge

 (
W

)

Fr
am

e
ra

te
 (

H
z)

Object speed (m/s)

Power
Frame rate

(a) Total power usage and achieved frame
rate for varying object speeds

 0

 0.5

 1

 1.5

 2

 2.5

 3

Base 0.25 1 4 16

Po
w

er
 u

sa
ge

 (
W

)
Object speed (m/s)

GPU
RAM

(b) GPU/memory usage

Figure 13: Power consumption and scene quality perception
score for varying object speeds.

the culling angle, despite the power benefits of a narrow core focal
angle, we set the focal angle to 10◦ to minimize the usability impact.

4.3 Object Speed and Frame Rate
Next, to investigate the impact of LpGL’s dynamic frame rate con-
trol, we conducted an experiment where four 69K triangle bunnies
are moved up and down the scene. We varied the speed of the bun-
nies from 0.25-16 m/s keeping each bunny 5 meters away from the
user. At 0.25 m/s (low dynamics), we expect LpGL to use a low frame
rate (15 fps), while at 16 m/s we expect LpGL to use the maximum
frame rate (60 fps). LpGL uses three levels of frame rates, 15, 30 and
60 fps, and we configured it based on our initial user tests to move
from 15 to 30 fps if, across two frames, at least one object moves
across more than 15% of the entire scene. If an object moves across
more than 30% over two subsequent frames, we set the frame rate
to 60 fps. From the results shown in Figure 13, we note that even
at 60 fps displaying the same objects, LpGL’s power consumption
is lower compared to the baseline (due to culling, focal angle etc.)
and it’s consumption rate is much lower at lower fps.

4.4 Latency Overhead
We now analyze the latency introduced by LpGL, in particular the
latency it adds to the rendering pipeline. We found that the addi-
tional latency per-object for LpGL was 45.57µsec. As the number of
objects increases, the overall latency of LpGL increases sub-linearly
and was ∼1.2ms for 32 objects and ∼2.5ms for 64 objects. Poten-
tially, we can distribute such operations over a number of threads
to minimize latency impact induced by processing multiple objects.

In addition, the latency to perform LpGL’s run-time object sim-
plification for dynamically loaded objects is 819 msec when simpli-
fying a 69K triangle object to 50%. This long latency is fortunately
a one time process when the object is first used. Later when the
object is re-used, LpGL loads the pre-simplified object to the scene
with minimal latency. Overall, the latency of LpGL is low and does
not add any noticeable delay.

4.5 Heat Reduction
Finally, we also see device heating as another important factor to
consider as mobile AR headsets are worn directly on the head, and
high operation temperatures can negatively affect the usability.
Therefore, we measure the temperature of the Magic Leap One

 54
 56
 58
 60
 62
 64
 66
 68

 0 200 400 600 800 1000 1200 1400

Te
m

pe
ra

tu
re

 (
C)

Time (s)

LpGL
Baseline

(a) Magic Leap One GPU heating

 10
 20
 30
 40
 50
 60

 0 200 400 600 800 1000 1200 1400

Fr
am

e
ra

te
 (

H
z)

Time (s)

LpGL
Baseline

(b) Magic Leap One frame rate

 10
 15
 20
 25
 30
 35

 100 200 300 400 500 600 700 800 900

Te
m

pe
ra

tu
re

 (
C)

Time (s)

LpGL
Baseline

(c) Hololens device heating

 10
 20
 30
 40
 50
 60

 0 100 200 300 400 500 600 700 800 900

Fr
am

e
ra

te
 (

H
z)

Time (s)

LpGL
Baseline

(d) Hololens frame rate

Figure 14: Temperature and achieved frame rate for the
Magic Leap One and Microsoft Hololens

and the Microsoft Hololens with and without applying LpGL us-
ing a dynamic application that saturates the GPU’s performance.
Specifically, we record how the GPU/device temperature changes
over time, along with their achieved frame rates and present the
results in Figure 14 for Magic Leap One and Hololens. Note that
the Magic Leap One’s processing units are external to the head-
set. The users can carry an external processing unit wired to the
headset device. On the other hand, on the Hololens, all processing
units are integrated to the forehead component of the headset itself.
Measuring heat on the Magic Leap One was done using its power
and thermal profiler and we present the GPU temperature, which
dominates the processing unit’s temperature. As the Hololens does
not provide such analysis software, we used an infrared thermal
camera to capture its forehead processing unit temperature on a
per-minute basis.

From Figures 14(a) and 14(b) we observe that, on the Magic Leap
One, the GPU temperature of the baseline saturates at a higher

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

163

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

Figure 15: Screenshot from our three applications

 9
 10
 11
 12
 13
 14

Base LpGL Culling Mesh
simplification

Frame rate
control

 0
 1
 2
 3
 4
 5

Po
w

er
 u

sa
ge

 (
W

)

5-
po

in
t

Li
ke

rt
 S

ca
le

Power User perception

Figure 16: Mean power usage and user satisfaction scores in
5-point Likert scale for static scene app.

level compared to LpGL and LpGL’s achieved frame rate is consis-
tently higher. We see similar patterns for the Hololens (Figures 14(c)
and 14(d)).

5 USER STUDIES
We now expand our evaluations to a set of IRB-approved user
studies. Here, we analyze the power savings and usability of LpGL
(and each of its features separately) under various scenarios. For
this purpose, we use three types of applications: a static scene
app, a dynamic/interactive scene app, and one where users were
given tasks that relate to the fidelity of the objects displayed in
the scene. Each experiment runs applications using five different
configurations in randomized order for each participant: (1) with
LpGL, (2) with LpGL culling only, (3) with LpGL frame rate control
only, (4) with LpGL mesh simplification only, and (5) without LpGL
(the native graphics rendering process). Our user study involved
25 participants (avg.age: 24.6, 10 female) and the overall time to
complete an experiment (per-user) was ∼30 mins with a $10 reward.
At the end of each testing phase, users provided their subjective
scores regarding the scene quality they experienced on a 5-point
Likert scale (very poor:1, very good:5).

5.1 Static Scene App: Floating Spheres
The purpose of the static scene application (the first app presented
to all participants), was to introduce and familiarize study partici-
pants to the mobile AR environment. No specific tasks were given
while the users slowly gazed through the 16 spheres (69K trian-
gles) that float (no dynamics) around the user (equally distributed
over 360◦). Each of the five configurations was used for 30 seconds
with short breaks to answer user perception questions after each
configuration.

Figure 16 presents the mean power usage and user perception
results for each test case. It shows that LpGL can reduce power
consumption by ∼22% (∼2.6 W) compared to the baseline graphics
rendering process, and the mesh simplification and culling sub-
components contribute heavily to the power savings. This is be-
cause, for the static scene app, the spheres that are not in the par-
ticipants’ core FOV can be culled or simplified, which leads to a

 9
 10
 11
 12
 13
 14

Base LpGL Culling Mesh
simplification

Frame rate
control

Po
w

er
 u

sa
ge

 (
W

)

Power

Figure 17: Mean power usage for dynamic/interactive scene
application.

 0
 0.2
 0.4
 0.6
 0.8

 1

Base LpGL Culling Mesh
simplification

Frame rate
control

 0
 1
 2
 3
 4
 5

H
it

R
at

e

5-
po

in
t

Li
ke

rt
 S

ca
le

Hit rate User perception

Figure 18: Hit rate and user perception in 5-point Likert
scale for dynamic/interactive scene app.

significant reduction in GPU and memory usage. From the system
lifetime’s perspective, the power reduction results for the base-
line translates to 3.0 hours of operation time, and LpGL adds 0.9
additional hours of operation. Finally, we can see that the user per-
ceived quality level reports for LpGL scored 3.54 compared to 3.80
for the baseline, but, this difference was not statistically significant
(2-tailed t-test, p<0.05).

5.2 Dynamic Scene App: Sphere Shooting
The second application is a simple shooting game in which mov-
ing spheres fly into the scene, and participants are asked to use
the controller and their gaze to “shoot” and eliminate the spheres.
We design the application so that the spheres to appear in vari-
ous patterns, in high-speeds, low-speeds, from the right and left,
etc. Compared to static scenes, this application introduces both
dynamics and interactive complexity. Again, we test with the five
configurations mentioned above and measure the power usage,
user perception level and the hit/miss rate of the sphere shooting
performance to quantify task accomplishment levels.

Figure 17 plots the mean power consumption of this experiment
with standard deviations. Results show that the frame rate compo-
nent shows only minimal power reduction of 2%, noticeably less
than 7% for the static scene app results in Figure 16. This is a result
of having dynamic scenes, as LpGL tries to adapt to such scenes
with high frame rates to preserve application quality. As in the
static scene application case, the culling and frame rate control
plays an important role; as the users focus on the spheres that they
shoot, other spheres can be simplified or culled. Overall, LpGL saves
∼11% power compared to the baseline consumption on average.

In Figure 18 we present the mean hit/miss rates of how accurate
the users performed sphere shooting with the user perception levels.
Despite changing the configurations, there is no noticeable change
in the task accomplishment performance (i.e., hit rate) and the user
perception is kept high across the different test cases.

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

164

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

Figure 19: Abnormal bunnies designed for our user studies
(a)-(c). Example of the reduced triangle bunny used for the
naïve power reduction tests (d).

 9
 10
 11
 12
 13
 14

Base LpGL Naive
 0
 20
 40
 60
 80
 100

Po
w

er
 u

sa
ge

 (
W

)

Ti
m

e
(s

)

Power
Search time

Figure 20: Mean power consumption and time consumed to
accomplish abnormal bunny search task.

5.3 Fidelity-centric App: Bunny Search
The third application used in our user study was designed to concep-
tualize a group of real world AR applications in which the fidelity
of the displayed object quality impacts task accomplishment per-
formance. Specifically, as Figure 19 shows, we made small, but
noticeable, changes to the original Stanford Bunny by adding small
spheres to the eyes or mouth. In the scene, we uniformly distribute
16 bunnies (mixture of normal and abnormal) in the 360◦ space.
Study participants would need to look close to the details of each
bunny to identify the abnormalities. We then ask study participants
to locate two abnormal bunnies with the same abnormality. These
bunnies are located at least 120◦ away from each other to avoid
cases where they are adjacent. We ask for two that are apart (in-
stead of one) to avoid the case where an abnormal bunny is located
closely at the view point at the beginning of the experiment; thus,
easy to find with minimal effort. With such scenario, we run three
experiments which include (1) LpGL, (2) baseline rendering, and (3)
naïve power reduction. In the naïve power reduction case, we use
the baseline rendering, but display bunnies with fewer triangles so
that the power usage of the Magic Leap One matches LpGL (c.f.,
Figure 19). At the beginning of each test, we let the participant
know what type of abnormality they are to find (among the three
types), and record the power usage and search times until the task
successfully completes. Note that prior to performing the three test
cases, we allowed the participants to perform one practice run with
the baseline rendering mode enabled, so that they well-understood
the target task.

We present the mean power consumption and the task accom-
plishment times in Figure 20. When using LpGL, we save approxi-
mately 20% in energy compared to the baseline. At the same time,
the time taken to accomplish the task was not noticeably affected
(11 seconds for baseline 13 seconds for LpGL). On the other hand,
when comparing LpGL against the naïve power reduction case,
the power consumption of the two are similar, but the task com-
pletion time differ by more than three-fold. Given that the naïve

power reduction case simplifies all displayed objects uniformly
(see Figure 19(d)), identifying the abnormal bunny becomes bigger
challenge than before, whereas LpGL reduces power usage while
preserving the user perceived scene quality by exploiting the head
and gaze orientation data from the mobile headset.

6 DISCUSSIONS AND FUTUREWORK

Applicability to othermobile ARheadsets: LpGL is designed to
be a device and platform-independent solution for reducing power
usage on mobile AR headsets. Given that its design is centered
around the standard graphics pipeline and native graphics library
APIs (e.g., OpenGL), the implementation is easy to port for different
platforms. In this work, while we mostly focus on the performance
statistics of the Magic Leap One, as the results in Section 4.5 shows,
LpGL is already implemented for use on the Microsoft Hololens
as well. We note that we observed similar power usage reduction
patterns on the Hololens by saving ∼ 25% of power for static scenes
and ∼ 12% for dynamic scene applications. As part of our future
work, we plan to expand LpGL support for different mobile AR
platforms as well.

Powermanagement of headset and other components:While
our preliminary studies show that the headset itself is also a major
consumer of power, this work focuses on the graphics pipeline-
related aspects of mobile untethered AR platforms. Techniques such
as those that duty-cycle the headset sensors and adaptively control
the brightness/resolution of objects, combined with our efforts in
optimizing the graphics pipeline, can have significant impact in
increasing the lifetime of mobile AR headsets. However, the fact
that the Magic Leap One, along with many other commercially
available mobile AR headsets, expose only limited access to the
headset configurations limits such research at this point.

In addition, the power usage of components such as WiFi need
to be collectively managed. As mentioned in Section 2, findings
from many previous work [1, 38, 39] can be applied to reduce WiFi
power usage in mobile AR applications. Overall, we see this as an in-
teresting direction of research towards designing a comprehensive
framework for mobile AR headset power management.

Real-world application validation anduser study limitations:
Given that mobile AR headset development is still in its early stages,
real-world applications for exploiting these platforms’ full capabili-
ties are still premature. At the same time, considering the impact
that these new wearable computing devices can offer, the domains
in which they can potentially contribute to can become very di-
verse. For this reason, while we wanted to test LpGL on a real-world,
widely used application, it was difficult to define a single set of ap-
plications that were representative for mobile AR headsets. For this
reason, our user studies focus on three types of applications, each
with different application and scene characteristics. We do so to
make sure that our evaluations cover diverse cases in how mobile
AR headsets can contribute in novel applications. Nevertheless, the
performance of LpGL and untethered mobile AR headsets in general
will heavily depend on application complexity and its requirements,
and we hope to apply LpGL on real-world applications as part of
our future work.

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

165

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Jaewon Choi et al.

Performance on image-heavy applications: There are many
mobile AR applications that are mostly based on augmenting simple
images or text (e.g., Apple Measure [42], Google Translate [43]), and
potentially mobile AR headsets could be used for such applications.
In such cases, usage of LpGLwill not be limited, but the performance
enhancements may be, given that these applications exploit low-
levels of object geometry complexity.

We also point out that since LpGL is a geometry based approach,
if contents within an object change (without changes in the bound-
aries), LpGLwill not be able to capture such dynamics. Nevertheless,
LpGL is conceptually orthogonal to approaches that exploit image-
based (or frame-content-based) approaches to ease computation
complexity (e.g., foveated rendering [18, 36], video streaming over-
head reduction [11, 49, 50]), and these schemes can be exploited
together with LpGL to conserve energy on both the image-level
and geometry level. While we leave the system-level impact of such
combination as future work, we see this as an interesting direction
to further explore.

Animation support: 3D objects in an application may have dif-
ferent types of animation effects that complicate the geometry of
an object over time. In this work, we validate the performance of
LpGL for “rigid body annimation” effects (e.g., sphere/bunny mov-
ing its coordinates without any internal changes). Furthermore, we
expect LpGL to be effective for animation effects with “affine trans-
formation” as well, which involves translation, rotation and scaling
of objects, given that the RDCC engine is designed to consider
objects’ transformation information. Unfortunately, we have not
validated the usability of other types of animation techniques such
as shape-deformable or image-based animations (e.g., skinning, par-
ticle system animation, texture animation [32, 35], fluid dynamics
animation, human-body animation [35]). We see the combination
of LpGL with retargetting [15] and morphing [28] to be effective to
resolve such issues and plan to pursue additional research in this
space as part of our future work.

7 RELATEDWORK
A number of prior work exploit human perception information
to reduce computation or energy consumption while minimizing
sacrifice in user experience on mobile headsets. Guenter et al. [18]
presented a way to improve performance by using eye tracking
information to render backgroundswith low resolution and focused-
content with high resolution. Patney et al. at NVIDIA has also an-
nounced an improved foveated rendering technique for VR displays
which optimizes performance by reducing image quality in the
viewer’s peripheral vision based on gaze tracking [36]. Hwang et
al. proposed a PSNR-based method to reduce energy consumption
using frame rate scaling by comparing the contents of two consecu-
tive frames in mobile games [23]. Tan et al. proposed FocusVR [47],
which performs screen dimming and vignetting to reduce VR head-
set power consumption. While sharing similar goals with LpGL,
these works focus on the VR environment, where background ren-
dering plays a significant role in power usage reduction. Our work
is tailored towards mobile AR headsets; thus, addresses different
challenges such as those discussed in Section 2.1.

LpGL resides between the application and the graphics library,
providing a transparent compatible layer that can intercept OpenGL

commands. This is similar to the approach taken by Miao et al.
in [34]. However, their focus was to adapt the graphics stack to the
circular displays of wearable smart watches and reduce the memory
and display interface traffic wasted due to non-rectangular displays,
while our approach focuses on energy efficiency.

In an attempt to reduce energy usage of the display on a mobile
device without deteriorating user perception, LPD [19] reduces the
memory and display interface traffic by utilizing the display update
information to suppressing the update of unchanged parts. He et
al. [20] makes an observation that a reduced display resolution
may still achieve the same user experience when the user-screen
distance is large. Based on this idea, authors adopt an ultrasonic-
based approach to accurately detect the user-screen distance and
make dynamic scaling decisions for maximum user experience and
power saving. Anand et al. [4] utilize the pixel brightness to save
significant amounts of power while preserving image qualities,
and FingerShadow [8] performs local dimming for the screen areas
covered by users’ fingers to save power without compromising their
visual experiences. Chameleon [10] reduces power consumption
for web browsing task on an mobile OLED-based device in color-
adaptive way to preserve real-time task capability. However, these
work are in the context of mobile devices and do not take into
account the characteristics of untethered AR headsets.

8 CONCLUSION
We presented LpGL, an OpenGL API compatible Low-power Graph-
ics Library for energy efficient untethered mobile AR headset ap-
plication development. We first presented extensive measurements
detailing the power consumption characteristics of the Magic Leap
One. From there, we built LpGL to use gaze/head orientation and
geometry data to obtain user perception information, and exploit
this to adaptively apply frame rate scaling, mesh simplification,
and culling techniques to enhance the battery lifetime of unteth-
ered AR headsets while minimizing losses in user perceived scene
quality. Moreover, these features are fully application-layer trans-
parent. Through comprehensive controlled in-lab experiments and
an IRB-approved 25 participant user study, we showed that LpGL
can reduce power consumption by up to ∼22%, with minimal la-
tency and user experience impact.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and our shep-
herd Dr. Robert LiKamWa for providing insightful comments on
improving the quality of the paper. We also thank Jaehee Choi
for providing the illustrations used in this work. This work was
supported by the the Basic Science Research Program through the
National Research Foundation of Korea funded by the Ministry of
Science and ICT (2018R1C1B6003869).

REFERENCES
[1] Omid Abari. 2017. Enabling High-Quality Untethered Virtual Reality. In Proceed-

ings of the 1st ACM Workshop on Millimeter-Wave Networks and Sensing Systems
2017 (mmNets ’17). ACM, New York, NY, USA, 49–49. https://doi.org/10.1145/
3130242.3131494

[2] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2008. Real-Time Render-
ing (3rd ed.). A. K. Peters, Ltd., Natick, MA, USA.

[3] FarhanAzmat Ali, Pieter Simoens, TimVerbelen, Piet Demeester, and Bart Dhoedt.
2016. Mobile device power models for energy efficient dynamic offloading at

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

166

https://doi.org/10.1145/3130242.3131494
https://doi.org/10.1145/3130242.3131494

LpGL: Low-power Graphics Library for Mobile AR Headsets MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

runtime. Journal of Systems and Software 113 (2016), 173 – 187.
[4] Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G. Kannan, Akhi-

hebbal L. Ananda, Mun Choon Chan, and Rajesh Krishna Balan. 2011. Adaptive
Display Power Management for Mobile Games. In Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys’11).
57–70.

[5] Edward Angel and Dave Shreiner. 2011. Interactive Computer Graphics: A Top-
Down Approach with Shader-Based OpenGL (6th ed.). Addison-Wesley Publishing
Company, USA.

[6] Vivek D. Bhise. 2011. Ergonomics in the Automotive Design Process. CRC Press.
[7] Inter IKEA Systems B.V. 2018. IKEA Place. Available at https://www.ikea.com/

gb/en/customer-service/ikea-apps.
[8] Xiang Chen, Kent W. Nixon, Hucheng Zhou, Yunxin Liu, and Yiran Chen. 2014.

FingerShadow: An OLED Power Optimization Based on Smartphone Touch
Interactions. In USENIX 6th Workshop on Power-Aware Computing and Systems
(HotPower’14).

[9] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. 2017. Viewport-adaptive
navigable 360-degree video delivery. In 2017 IEEE International Conference on
Communications (ICC). 1–7. https://doi.org/10.1109/ICC.2017.7996611

[10] Mian Dong and Lin Zhong. 2011. Chameleon: A Color-adaptive Web Browser
for Mobile OLED Displays. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’11). ACM, New York, NY,
USA, 85–98. https://doi.org/10.1145/1999995.2000004

[11] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation Prediction for 360&Deg; Video Streaming in
Head-Mounted Virtual Reality. In Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV’17). ACM,
New York, NY, USA, 67–72. https://doi.org/10.1145/3083165.3083180

[12] Michael Garland and Paul S. Heckbert. 1998. Simplifying Surfaces with Color
and Texture Using Quadric Error Metrics. In Proceedings of the Conference on
Visualization ’98 (VIS ’98). IEEE Computer Society Press, Los Alamitos, CA, USA,
263–269. http://dl.acm.org/citation.cfm?id=288216.288280

[13] Nirit Gavish, Teresa GutiÃľrrez, Sabine Webel, Jorge RodrÃŋguez, Matteo Peveri,
Uli Bockholt, and Franco Tecchia. 2015. Evaluating virtual reality and augmented
reality training for industrial maintenance and assembly tasks. Interactive Learn-
ing Environments 23, 6 (2015), 778–798.

[14] Google Glass. 2018. Available at https://x.company/glass/. Last accessed 2018-
04-02.

[15] Michael Gleicher. 1998. Retargetting Motion to New Characters. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 33–42. https://doi.org/10.1145/
280814.280820

[16] Theodore P. Grosvenor. 2007. Primary Care Optometry. Elsevier Health Sciences.
[17] Khronos Group. 2018. OpenGL ES 3.0 - OpenGL for Embedded Systems version

3.0. Available at https://www.khronos.org/opengles/. Last accessed 2018-04-02.
[18] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.

Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164 (Nov. 2012), 164:1–
164:10 pages.

[19] MyungJoo Ham, Inki Dae, and Chanwoo Choi. 2015. LPD: Low Power Dis-
play Mechanism for Mobile and Wearable Devices. In USENIX Annual Technical
Conference (USENIX ATC 15). 587–598.

[20] Songtao He, Yunxin Liu, and Hucheng Zhou. 2015. Optimizing Smartphone
Power Consumption Through Dynamic Resolution Scaling. In Proceedings of
the 21st Annual International Conference on Mobile Computing and Networking
(MobiCom’15). 27–39.

[21] Microsoft HoloLens. 2018. Available at https://www.microsoft.com/en-us/
hololens. Last accessed 2018-04-02.

[22] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D.
Foley, Steven Feiner, and Kurt Akeley. 2013. Computer Graphics: Principles and
Practice (3 ed.). Addison-Wesley, Upper Saddle River, NJ.

[23] Chanyou Hwang, Saumay Pushp, Changyoung Koh, Jungpil Yoon, Yunxin Liu,
Seungpyo Choi, and Junehwa Song. 2017. RAVEN: Perception-aware Optimiza-
tion of Power Consumption for Mobile Games. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking (MobiCom’17).
422–434.

[24] Augmedix Inc. 2018. Augmedix. Available at https://www.augmedix.com.
[25] Magic Leap Inc. 2018. Available at https://www.magicleap.com/magic-leap-one.

Last accessed 2018-04-02.
[26] Niantic Inc. 2018. Pokemon Go. Available at https://www.pokemongo.com.
[27] Tan Kiat Wee, Eduardo Cuervo, and Rajesh Krishna Balan. 2016. Demo: FocusVR:

Effective & Usable VR Display Power Management. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
Companion (MobiSys ’16 Companion). ACM, New York, NY, USA, 122–122. https:
//doi.org/10.1145/2938559.2938564

[28] Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter Schröder. 1999.
Multiresolution Mesh Morphing. In Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 343–350. https:
//doi.org/10.1145/311535.311586

[29] Robert LiKamWa, Zhen Wang, Aaron Carroll, Felix Xiaozhu Lin, and Lin Zhong.
2014. Draining Our Glass: An Energy and Heat Characterization of Google Glass.
In Proceedings of 5th Asia-Pacific Workshop on Systems (APSys ’14).

[30] K. W. Lim, J. Ha, P. Bae, J. Ko, and Y. B. Ko. 2018. Adaptive Frame Skipping With
Screen Dynamics for Mobile Screen Sharing Applications. IEEE Systems Journal
PP, 99 (2018), 1–12. https://doi.org/10.1109/JSYST.2016.2589238

[31] F. Liu, P. Shu, and J. C. S. Lui. 2015. AppATP: An Energy Conserving Adaptive
Mobile-Cloud Transmission Protocol. IEEE Trans. Comput. 64, 11 (Nov 2015),
3051–3063.

[32] Frank Luna. 2012. Introduction to 3D Game Programming with DirectX 11. Mercury
Learning & Information, USA.

[33] Autodesk Maya. 2018. Available at https://help.autodesk.com/cloudhelp/2017/
CHS/Maya-Tech-Docs/CommandsPython/polyReduce.html. Last accessed 2018-
12-14.

[34] Hongyu Miao and Felix Xiaozhu Lin. 2016. Tell Your Graphics Stack That the
Display Is Circular. In Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications (HotMobile’16). 57–62.

[35] Rick Parent. 2012. Computer Animation: Algorithms and Techniques (3 ed.). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA.

[36] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards Foveated Rendering for
Gaze-tracked Virtual Reality. ACM Trans. Graph. 35, 6, Article 179 (Nov. 2016),
179:1–179:12 pages.

[37] Microsoft Universal Windows Platform. 2018. What’s a Universal Windows
Platform (UWP) app? https://docs.microsoft.com/en-us/windows/uwp/get-
started/universal-application-platform-guide.

[38] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare:
Practical Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking (MobiCom ’18). ACM, New York, NY, USA, 99–114. https://doi.org/
10.1145/3241539.3241565

[39] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Tile-Based
Viewport-Adaptive Panoramic Video Streaming on Smartphones. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking
(MobiCom ’18). ACM, New York, NY, USA, 817–819. https://doi.org/10.1145/
3241539.3267715

[40] Moo-Ryong Ra, Jeongyeup Paek, Abhishek B. Sharma, Ramesh Govindan, Mar-
tin H. Krieger, and Michael J. Neely. 2010. Energy-delay Tradeoffs in Smartphone
Applications. In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services (MobiSys’10). 255–270.

[41] Hans Strasburger, Ingo Rentschler, and Martin JÃĳttner. 2011. Peripheral vision
and pattern recognition: A review. Journal of Vision 11, 5 (2011), 13. https:
//doi.org/10.1167/11.5.13 arXiv:/data/journals/jov/933487/jov-11-5-13.pdf

[42] Use the Measure app on your iPhone or iPad. 2019. Available at https://support.
apple.com/en-us/HT208924. Last accessed 2019-03-29.

[43] Google Translate. 2019. Available at https://translate.google.com. Last accessed
2019-03-29.

[44] Greg Turk and Marc Levoy. 1994. "Stanford Bunny". Available at Stanford
University Computer Graphics Laboratory http://graphics.stanford.edu/data/
3Dscanrep/.

[45] X.Wang, S. K. Ong, and A. Y. C. Nee. 2016. A comprehensive survey of augmented
reality assembly research. Advances in Manufacturing 4, 1 (01 Mar 2016), 1–22.

[46] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600–612.

[47] Tan Kiat Wee, Eduardo Cuervo, and Rajesh Balan. 2018. FocusVR: Effective
8 Usable VR Display PowerManagement. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 3, Article 142 (Sept. 2018), 25 pages. https://doi.org/10.
1145/3264952

[48] Wikipedia. 2018. Available at https://en.wikipedia.org/wiki/Peak_
signal-to-noise_ratio. Last accessed 2018-12-14.

[49] Shaowei Xie, Qiu Shen, Yiling Xu, Qiaojian Qian, Shaowei Wang, Zhan Ma, and
Wenjun Zhang. 2018. Viewport Adaptation-Based Immersive Video Streaming:
Perceptual Modeling and Applications. arXiv:arXiv:1802.06057

[50] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef Gabbouj.
2016. HEVC-compliant Tile-based Streaming of Panoramic Video for Virtual
Reality Applications. In Proceedings of the 24th ACM International Conference on
Multimedia (MM ’16). ACM, New York, NY, USA, 601–605. https://doi.org/10.
1145/2964284.2967292

Session 3: What is Real MobiSys ’19, June 17–21, 2019, Seoul, Korea

167

https://www.ikea.com/gb/en/customer-service/ikea-apps
https://www.ikea.com/gb/en/customer-service/ikea-apps
https://doi.org/10.1109/ICC.2017.7996611
https://doi.org/10.1145/1999995.2000004
https://doi.org/10.1145/3083165.3083180
http://dl.acm.org/citation.cfm?id=288216.288280
https://x.company/glass/
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/280814.280820
https://www.khronos.org/opengles/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.augmedix.com
https://www.magicleap.com/magic-leap-one
https://www.pokemongo.com
https://doi.org/10.1145/2938559.2938564
https://doi.org/10.1145/2938559.2938564
https://doi.org/10.1145/311535.311586
https://doi.org/10.1145/311535.311586
https://doi.org/10.1109/JSYST.2016.2589238
https://help.autodesk.com/cloudhelp/2017/CHS/Maya-Tech-Docs/CommandsPython/polyReduce.html
https://help.autodesk.com/cloudhelp/2017/CHS/Maya-Tech-Docs/CommandsPython/polyReduce.html
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3241539.3267715
https://doi.org/10.1145/3241539.3267715
https://doi.org/10.1167/11.5.13
https://doi.org/10.1167/11.5.13
http://arxiv.org/abs//data/journals/jov/933487/jov-11-5-13.pdf
https://support.apple.com/en-us/HT208924
https://support.apple.com/en-us/HT208924
https://translate.google.com
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1145/3264952
https://doi.org/10.1145/3264952
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://arxiv.org/abs/arXiv:1802.06057
https://doi.org/10.1145/2964284.2967292
https://doi.org/10.1145/2964284.2967292

	Abstract
	1 Introduction
	2 Preliminary Study: AR Headsets
	2.1 Background
	2.2 Detailed Power Measurements
	2.3 Minimum and Maximum Power Usage
	2.4 Graphics Rendering Components
	2.5 Display
	2.6 Wireless Networking
	2.7 Summary

	3 Low-power Graphics Library
	3.1 LpGL Front-end APIs
	3.2 Mesh Simplification
	3.3 Frame Rate Control
	3.4 Culling
	3.5 Reactive Display Complexity Control

	4 In-lab Experiments
	4.1 Culling Angle
	4.2 Focal Angle
	4.3 Object Speed and Frame Rate
	4.4 Latency Overhead
	4.5 Heat Reduction

	5 User Studies
	5.1 Static Scene App: Floating Spheres
	5.2 Dynamic Scene App: Sphere Shooting
	5.3 Fidelity-centric App: Bunny Search

	6 Discussions and Future Work
	7 Related Work
	8 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 15
 Mask co-ordinates: Horizontal, vertical offset 37.73, 719.69 Width 540.74 Height 35.63 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 15

 CurrentAVDoc

 37.7258 719.6923 540.7365 35.6299

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 13
 12
 12

 1

 HistoryList_V1
 qi2base

