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Abstract—6TiSCH is an IPv6 protocol stack over time-slotted
channel hopping (TSCH) mode of IEEE 802.15.4e and routing
protocol for low-power and lossy networks (RPL), enabling low-
power wireless multi-hop networking for Internet of Things
(IoT). However, its network formation process involving TSCH
bootstrapping, RPL topology formation, and TSCH resource
scheduling, is often extremely slow due to its inherent rendezvous
mechanism; the use of TSCH common shared cells. Common
shared cell is the sole transmission path during network forma-
tion, and thus collisions are frequent in these scarce resources
while clear channel assessment fails to resolve the issue. To
address this problem, we propose Quick6TiSCH, a method for
accelerating 6TiSCH network formation by prioritizing critical
control messages and diversifying their transmission times within
common shared cells to facilitate collision avoidance among
nodes. Since negotiation is infeasible prior to network formation,
Quick6TiSCH adopts an autonomous approach allowing each
node to adaptively mitigate collisions based on its network
join progress. Evaluation on real-world testbeds demonstrate a
significant reduction in network formation time by 62.6% with
transmission overhead similar to the baseline.

Index Terms—6TiSCH, TSCH, RPL, IEEE 802.15.4, LLN

I. INTRODUCTION

6TiSCH [1] is an IETF standard protocol stack that de-
fines IPv6 over IEEE 802.15.4e time-slotted channel hopping
(TSCH) [2]. Together with the routing protocol for low-
power and lossy networks (RPL) [3]–[5], it enables low-
power wireless multi-hop networking for resource constrained
embedded devices. 6TiSCH has attracted significant attention
for its applicability in various industrial and Internet of Things
(IoT) applications [6]–[8]. However, from various studies on
6TiSCH (§III), it is well-known that the network formation
process of 6TiSCH could progress extremely slowly. This
directly affects the network availability as well as how quickly
applications are executable on the network.

Formation of a 6TiSCH network encompasses the processes
of joining at the TSCH layer (link), joining at the RPL layer
(routing), and establishing bidirectional links. Subsequently,
allocation of resources (TSCH cells) for data transmission [9]–
[12] takes place. In TSCH, there is a common shared cell per
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Fig. 1: Illustration of TSCH channel resources with a slotframe size
of 101. There is only one common shared cell every 101 timeslots.

every repeating group of timeslots (a.k.a slotframe, Fig. 1),
a common channel resource automatically allocated and ac-
cessed by all nodes (details in §II-A). Since additional resource
allocation (i.e., cells for unicast transmissions) is performed
only after completion of network formation, all nodes commu-
nicate through this scarce resource during network formation.
This can lead to severe collisions and congestion in the com-
mon shared cells, especially during the bootstrapping phase,
resulting in transmission failures and re-transmissions leading
to prolonged network formation time.

Despite frequent collisions in common shared cells during
network formation, the inherent design of TSCH does not
effectively resolve this issue. In TSCH, all nodes are time-
synchronized and communicate in a slotted manner as shown
in Fig. 2a. Thus, if multiple nodes attempt to transmit within a
same timeslot, they start simultaneously as shown in Fig. 2b,
resulting in a collision. Even with clear channel assessment
(CCA) before transmission, the transmitters are unaware of
each other due to the aligned start times, making collisions
unavoidable. Consequently, severe collisions occur repeatedly
within common shared cells, leading to inefficiency and delays
during network formation process.

To address this problem, we propose Quick6TiSCH which
enables transmission detection among nodes within common
shared cells by diversifying the start times of transmissions.
Specifically, Quick6TiSCH assigns different transmission time
offsets to each node based on its network formation progress,
transmission status, and priority of messages, to distribute the
transmission start points across the time domain. This ap-
proach allows Quick6TiSCH to mitigate collisions in common
shared cells and accelerates the network formation process.

We implement Quick6TiSCH on real IEEE 802.15.4 embed-
ded devices using Contiki-NG [13], and evaluate on a large-
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(a) Successful packet transmission within a TSCH timeslot.
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(b) Packet collision within a TSCH timeslot.

Fig. 2: Unavoidable collision within a TSCH timeslot due to the
common transmission (Tx) time offset.

scale topology in the FIT/IoT-LAB public LLN testbed [14].
The results demonstrate substantial improvements in network
formation time by 62.6% with similar transmission overhead
compared to the default 6TiSCH.

Our contributions can be summarized as follows.
• We identify the root cause of 6TiSCH network formation

delays that CCA fails to mitigate.
• We propose Quick6TiSCH, a method to accelerate network

formation in 6TiSCH networks.
• We implement Quick6TiSCH on real embedded devices,

and evaluate in a sizeable public testbed to demonstrate
significant performance improvement.
The remainder of this paper is organized as follows: We

discuss the background and motivation of this work in §II, and
review related prior work in §III. We then present the design
of our proposed scheme in §IV, and evaluate our proposal in
§V. Finally, we conclude the paper in §VI.

II. BACKGROUND AND MOTIVATION

We first briefly introduce the TSCH and RPL protocols, and
then describe the 6TiSCH network stack, its formation process,
and the problem and motivation behind this work.

A. Time-Slotted Channel Hopping (TSCH)

TSCH [2] is a medium access control (MAC) protocol
standardized in IEEE 802.15.4e. By synchronizing the network
and enabling time-slotted communication, TSCH enhances
reliability and energy efficiency. Its channel hopping further
improves resilience to external interference and fading by
leveraging channel diversity. Fig. 1 illustrates an example of
TSCH’s resource map operation.

TSCH divides time into timeslots, typically set to 10 ms
each, allowing for an exchange of a maximum-sized (128
bytes) frame and an acknowledgement (ACK) of up to 70
bytes [15]. As shown in Fig. 2a, TSCH nodes by default

begin transmission at the same time offset (Tx offset) from
the start of a timeslot. Each timeslot is assigned an absolute
slot number (ASN) which starts at zero when the network
begins and increments sequentially. A collection of timeslots
forms a slotframe, which repeats over time and serves as a
scheduling unit. The number of timeslots within a slotframe is
the slotframe length (LSF) (e.g. 101 in Fig. 1). The time offset
(to) represents the relative position of a particular timeslot
within a slotframe and is calculated as,

to = mod(ASN, LSF). (1)

To determine the channel for hopping, TSCH uses a channel
offset (co). There are up to 16 channels, and the channel for
each timeslot is calculated based on the channel offset as,

Channel = Listc[mod(ASN + co, sizeof(Listc))] (2)

where Listc is a set of channels to be used, and sizeof(Listc)
is the number of channels in Listc. As ASN increases, each
timeslot with a specific co hops over different channels. Even
with the same ASN timeslot, different co values result in
selection of different channels.

TSCH standard defines time-slotted communication and
channel hopping, but leaves resource scheduling–the selec-
tion of when (to) and on which channel (co) each device
communicates–as an open problem. To fill this gap, vari-
ous TSCH schedulers have been proposed [9]–[12]. One of
the simplest is the 6TiSCH minimal configuration (6TiSCH-
MC) [16], which autonomously allocates a single resource
shared by all nodes (i.e., a common shared cell) at a fixed
time and channel offsets in every slotframe (e.g., zero for
both in Fig. 1). It is important to note that the slow network
formation problem we aim to solve is largely independent of
the scheduler used. During the network formation process, as
there are typically no other scheduled resources, most packet
transactions occur in commonly shared cells similar to the
common shared cell in 6TiSCH-MC. This means that the
problem can occur regardless of the scheduler type. Therefore,
without loss of generality, we select 6TiSCH-MC for our study.

In a TSCH network, synchronization information is prop-
agated through a control message called Enhanced Beacon
(EB). Starting from the TSCH coordinator, all TSCH joined
nodes periodically transmit EB messages. A new node not
yet joined to the TSCH network waits for EB broadcasted by
already joined nodes while scanning all available channels.
Upon receiving an EB, the node extracts TSCH network
information (including synchronization) and joins the network.

B. Routing protocol for low-power and lossy networks (RPL)

RPL, the IETF standard IPv6 routing protocol for low-
power and lossy networks, is tailored for resource-constrained
IoT devices [3]–[5], [17], [18]. As a distance-vector protocol,
RPL forms a tree-like routing topology called a destination-
oriented directed acyclic graph (DODAG). Nodes broadcast
DODAG Information Object (DIO) messages to share and
update routing information. Upon receiving a DIO message, a
node selects a neighboring node as its parent for its upward
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Physical layer IEEE 802.15.4

Data link layer
IEEE 802.15.4e TSCH mode

IETF 6TiSCH-MC

Network layer
IETF RPL

IETF 6LoWPAN

Transport layer IETF UDP

Application layer 6TiSCH application

Fig. 3: An example of the 6TiSCH network stack.
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Fig. 4: State transition during 6TiSCH network formation.

route towards the root. The node then sends a Destination Ad-
vertisement Object (DAO) message to this parent to establish
the downward path, creating a bidirectional link. If the node
needs to change its parent node, it sends a DAO message
to the new parent and a no-path DAO message to the old
parent to update the forwarding tables. A node can trigger
DIO transmissions from its neighbors by sending a DODAG
Information Solicitation (DIS) message. Upon receiving a DIS
message, nodes minimize their DIO transmission intervals to
quickly send DIO messages.

C. 6TiSCH stack and network formation process

As aforementioned, 6TiSCH [1] is a network stack designed
for low-power wireless multi-hop IPv6 networking over IEEE
802.15.4e TSCH mode with RPL. Fig. 3 presents the 6TiSCH
stack considered in this work. The physical layer of 6TiSCH is
IEEE 802.15.4, with TSCH and RPL serving as the link layer
and routing layer, respectively. On top of the TSCH, 6TiSCH-
MC allocates a common shared cell as shown in Fig. 1. To
support IPv6 communication, the 6LoWPAN adaptation layer
is added above the link layer. UDP is commonly used as the
transport layer protocol for the 6TiSCH stack.

For the 6TiSCH network to fully operate, network forma-
tion, which includes joining processes across multiple layers,
must occur. Fig. 4 illustrates the overall 6TiSCH network
formation process modeled as a state transition diagram.
6TiSCH nodes transition sequentially through four essential
states: new node, TSCH joined, RPL joined, and fully joined.

Initially, in the new node state, a node waits for TSCH
EB messages broadcasted by nodes in the TSCH joined or
subsequent states. Upon receiving an EB, the node joins the
TSCH network, moving into the TSCH joined state with
TSCH communication capability but only on the common
shared cells. The node then listens for RPL DIO messages
broadcasted by nodes in the RPL joined or subsequent states.
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Fig. 5: Time evolution of transmissions within common shared cells,
and the time when the state transition of all nodes completed.

This allows the node to join the RPL network and establish an
upward route, moving into the RPL joined state. In the RPL
joined state, the node sends a DAO message to its RPL parent
to establish a downward route, finally transitioning to the fully
joined state where a bidirectional unicast link is established.

As described, the transitions between join states rely on the
exchange of specific control messages including EB, DIO, and
DAO. The prerequisite conditions for state transitions are the
reception of EBs and DIOs, and the successful transmission of
DAOs, as shown in arrows in Fig. 4. To enable other nodes’
state transitions, a node must transmit EB or DIO messages
according to their states. For example, nodes in states after
TSCH joined must send EB messages, and nodes in states
after RPL joined must send DIO messages, as depicted in red
in Fig. 4. In short, to ensure swift 6TiSCH network formation,
it is crucial that the necessary packets are exchanged promptly
for each node to successfully complete its state transitions.

D. Slow 6TiSCH network formation problem

We have argued that 6TiSCH network formation, occurring
within the common shared cells accessed by all nodes, is prone
to severe collisions. Due to its operational characteristics,
TSCH cannot effectively handle these collisions, potentially
leading to slow network formation. Here we validate this
through experiments on a real testbed with 83 nodes (Fig. 8)
using 6TiSCH-MC scheduler with a common shared slotframe
size of 101. Fig. 5 illustrates the number of nodes attempting
transmissions in the common shared cell over time, with
different colors representing various types of messages. The
vertical dashed lines indicate the time taken for all nodes to
reach each state in Fig. 4 at least once. The result reveals that
immediately after network initiation, a huge number of nodes
engage in packet transmissions within the common shared cell.
In some cells, more than 20 nodes attempt to transmit packets
simultaneously. However, successful reception rate for these
packets is notably low. Consequently, it takes more than 45
minutes for all 83 nodes to reach the fully joined state.

Addressing collisions within the common shared cell and
accelerating the network formation process is crucial to make
6TiSCH network practically useful. This motivates us to
propose Quick6TiSCH, a method that enables each node to
adaptively mitigate collisions by prioritizing critical control
messages and diversifying their transmission times within
common shared cells. This autonomous approach, based on
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each node’s network join progress, results in swift 6TiSCH
network formation.

III. RELATED WORK

There have been several prior research efforts aimed at
improving 6TiSCH network formation.

Vallati et al. [19] proposed dynamic resource allocation
(DRA) of common shared cells based on control packet load to
mitigate collisions. However, this approach necessitates negoti-
ation between nodes. Additionally, it converts other scheduled
cells into common shared cells, resulting in decreased data
throughput and increased energy consumption. Vucinic et
al. [20] found that EB transmissions can cause congestion
in common shared cells and suggested a low EB rate to
alleviate this issue at the cost of delayed state transitions.
C2DBI [21] dynamically adjusts the EB generation interval
to address congestion, while Kalita et al. [22] dynamically
adjust the priority of control packets to prevent delays caused
by the highest priority given to EBs. TRGB [23] divides the
common shared cells into three types and differentiates packets
transmitted within each type of common shared cell. The goal
is to reduce collision probability, but this approach lead to
resource scarcity issues as resources are divided into thirds.
None of these studies investigated the fundamental causes
of delay in network formation: the unavoidable collision
problem within the common shared cell due to closely aligned
transmission start times.

The concept of assigning distinct offsets to transmission
times within TSCH slots has been explored in previous stud-
ies [24], [25]. In [24], transmission offset differentiation is
utilized in dedicated cells, allowing nodes that do not own the
dedicated cell to utilize it when the owner is not transmitting
packets, with the goal of reducing latency. DualBlock [25]
introduces multiple offsets in shared cells for unicast trans-
mission, aiming to alleviate collisions. However, these studies
focus on mitigating collisions during data transmission phase
rather than the network formation phase.

IV. PROPOSED SCHEME

We propose Quick6TiSCH, a method to accelerate 6TiSCH
network formation. We describe the diversification of Tx time
offsets within the common shared cell, and then explain how
formation-critical packets are autonomously prioritized based
on formation progress, message type, and transmission status.
We also outline the supplementary features of Quick6TiSCH.

A. Diversification of transmission time offsets

In default TSCH, transmission start times within a common
shared cell are closely aligned, preventing nodes from detect-
ing each other’s transmissions and causing unavoidable colli-
sions as shown in Fig. 2b. To address this issue, Quick6TiSCH
diversifies Tx time offsets illustrated in Fig. 6. While Fig. 2b
accounts for the longest ACK (70 byte) filling the 10 ms slot,
Fig. 6 assumes a more typical ACK length (20 byte).

In Fig. 6, packet transmission of Tx node 2 begins after a
delay of ∆T compared to Tx node 1, enabling Tx node 2 to

Packet ACK

Packet ACK

Packet

Rx node

Tx node 1

TSCH	slot = 10	-. 

Tx node 2

Tx offset 

Transmission

Successful reception

Postponed transmissionCCA

CCA detecting packet transmission

∆0

Fig. 6: Collision avoidance through diversification of transmission
time offsets in each synchronized timeslot.
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ACK

ACK

Tx node 3

Tx node 4
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Packet

Packet

Packet

Packet

Packet

∆" ∆" ∆" ∆""#!(0)

CCA

Fig. 7: Quick6TiSCH’s transmission offset diversification.

perform CCA after Tx node 1’s transmission has started. This
strategic delay enables Tx node 2 to detect Tx node 1’s trans-
mission. Then, Tx node 2 could attempt its packet transmission
in a later slot by applying the backoff mechanism [2]. Con-
sequently, the Rx node successfully receives the packet from
Tx node 1 and sends back an ACK. In this way, TSCH nodes
can detect transmissions from nodes with smaller offsets,
avoiding collisions and facilitating successful packet delivery.

During 6TiSCH network formation process, multiple nodes
may simultaneously access a single common shared cell.
To enhance the effectiveness of the diversification despite
this simultaneous access, Quick6TiSCH needs to distribute
transmission start times across the time domain as widely as
possible. Fig. 7 illustrates our proposal on this, showing five
different transmission time offsets.

The default Tx offset (in Fig. 2) specified in the standard [2]
is set with a generous margin, allowing flexibility for adjust-
ing the actual transmission start time forward. Additionally,
since typical ACK length (20 bytes) is much shorter than
the maximum size (70 bytes) [15], the transmission start
time can also be adjusted backward relative to the default
TSCH configuration. Based on these two observations, by
spreading transmission start times both forward and backward,
Quick6TiSCH could support five distinct Tx time offsets as
illustrated in Fig. 7. The earliest transmission begins at TXo(0)
at the slot’s outset, with subsequent transmissions spaced at
intervals of ∆T .

By performing CCA once or twice before starting transmis-
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TABLE I: Conditions for the formation-critical packets

State TSCH EB RPL DIO RPL DAO

New node N/A
N/A N/A

TSCH joined
Up to k

EB packet(s)RPL joined Up to k

DIO packet(s)

DAO packet(s) until
successful delivery

Fully joined N/A

sion, each preceding packet transmission becomes detectable
to following transmissions. For example, Tx node 5, with the
largest Tx time offset can detect transmissions from Tx nodes
1 and 2 via its first CCA, and transmissions from Tx nodes 3
and 4 through its second CCA. In this manner, Quick6TiSCH
avoids collision in common shared cells, which is impossible
in the default TSCH.

B. Autonomous critical control packet prioritization

Quick6TiSCH determines packet criticality, and au-
tonomously prioritizes critical control packets at each node
based on network formation progress, message type, and
transmission status.
Identification of critical packet: Quick6TiSCH identifies the
packets required for state transitions in Fig. 4 as formation-
critical packets. Transitioning from the new node to the TSCH
joined state requires receiving TSCH EB messages, while
transitioning from the TSCH joined to the RPL joined state
requires receiving RPL DIO messages. Consequently, nodes
in the TSCH joined state or beyond must send some EB
packets, and nodes in the RPL joined state or beyond must
send both EB and DIO packets. Additionally, transitioning to
the fully joined state requires sending an RPL DAO message
and receiving the corresponding ACK.

Table I summarizes the conditions outlined above for
formation-critical packets. Given Quick6TiSCH’s principle of
autonomous operation, we simplify the conditions for EB and
DIO. For nodes in the TSCH joined state or later, up to k
EB packets are considered formation-critical. Similarly, for
nodes in the RPL joined state or later, up to k DIO packets
are considered formation-critical. For nodes in the RPL joined
state, DAO packet(s) are considered formation-critical until
successful delivery. Then, Quick6TiSCH’s autonomous packet
prioritization for those critical packets follows a two-step
procedure: (1) network-level prioritization, and (2) node-level
prioritization.
Network-level prioritization: To ensure critical packets
are prioritized for transmission throughout the network,
Quick6TiSCH separates offsets for critical and non-critical
packets: critical packets are assigned smaller offsets, while
non-critical packets receive larger offsets. Quick6TiSCH im-
plements this as follows.

TXnon
o = TXo(0) + ∆T · (N − 1). (3)

TXcrit
o (n) = TXo(0) + ∆T · n, s.t. 0 ≤ n < N − 1. (4)

TXnon
o and TXcrit

o (n) denote the transmission time offsets for
non-critical packets and critical packets, respectively. N is the
number of offsets (5 in our study). TXo(0) is the earliest Tx
time offset, and ∆T is the time interval between distinct offsets
(Fig. 7). Through Eq. (3), non-critical packets are assigned
the largest offset. According to Eq. (4), critical packets are
assigned smaller offsets, thus always having higher priority
over non-critical packets.

In this way, Quick6TiSCH prioritizes critical packets without
any negotiation and in a fully autonomous manner. Whenever
a critical packet transmission occurs, the transmission of non-
critical packets is deferred. In the absence of critical packet
transmissions, non-critical packets are transmitted in the same
manner as the default TSCH operation.
Node-level prioritization: In addition to the network-level
prioritization, Quick6TiSCH incorporates node-level priori-
tization. This prioritization ensures that critical packets, as
determined by Table I based on the node’s network formation
progress and message type, are sent first from the buffer.

C. Further collision avoidance for critical control packets

In addition to prioritization, Quick6TiSCH enables collision
avoidance, a capability absent in default TSCH. The key to
achieving collision avoidance lies in nodes selecting different
transmission time offsets. In Eq. (4), we specified the range
of transmission time offsets for critical packets, and there are
multiple offsets (4 in our study) available for collision avoid-
ance. The challenge lies in distributing the critical packets
across these multiple offsets. It is important to note that relying
on node negotiation is impractical during formation as the
common shared cell–the sole transmission path–experiences
severe congestion. Instead, Quick6TiSCH uses random offsets
to autonomously spread nodes across different transmission
time offsets as n = random(N − 1). Then, Quick6TiSCH
lets the transmission for critical packets begin at the randomly
selected offset, TXcrit

o (n).
Meanwhile, if a node repeatedly selects large offsets while

other nodes choose smaller ones, the node with the larger
offset will continuously defer its transmission, potentially
resulting in delivery failure for extended time. To address
this issue, Quick6TiSCH introduces prioritization based on
transmission status, particularly focusing on the number of
transmission postponements. As the count of postponements
increases, Quick6TiSCH gradually reduces the upper bound
for selecting a random transmission time offset, thereby as-
signing smaller offsets and increasing the priority. To this end,
Quick6TiSCH defines a constant P , representing the number
of postponements after which the upper bound of the offset
is reduced. If the number of postponements for a specific
packet is p, Quick6TiSCH selects the random number for the
transmission time offset as,

n = random(max(0, N − 1− ⌊p/P ⌋)) (5)

Then, Quick6TiSCH determines the Tx time offset for critical
packets according to Eq. (4). This approach ensures that pack-
ets are eventually assigned the earliest offset (i.e., TXo(0)),
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allowing them to be transmitted regardless of the presence of
other packet transmissions.

D. Supplementary features of Quick6TiSCH

The standard TSCH does not account for detection of
other packets through CCA. Thus, to enable Quick6TiSCH to
function effectively with the aforementioned features, we need
to enhance the retransmission and backoff mechanisms, as well
as the management policy for packets awaiting transmission.
Legacy retransmission and backoff mechanisms: In default
TSCH, retransmission mechanism ensures successful unicast
packet delivery. If a transmission fails, it is retransmitted,
incrementing the retransmission count by 1. When this count
reaches the limit (i.e., macMaxFrameRetries as defined in [2]),
the packet is dropped. If the channel is detected as busy
through CCA before transmission starts, the retransmission
count is incremented, and retransmission will be performed
later without attempting transmission within the current cell.
Backoff mechanism resolves contention within the common
shared cell during retransmission. Each retransmission in-
creases the backoff exponent (BE) by 1 (up to a maximum),
and a random backoff counter is selected from the range
[0, 2BE − 1]. This counter decreases at every scheduled cell
until it reaches 0; then the next retransmission is performed.

For broadcast packets, there is no notion of transmission
failures. If CCA detects a busy channel and refrains from
transmitting a broadcast packet, the retransmission occurs im-
mediately in the next cell without any backoff or consideration
of retransmission counts.
Modification on retransmission and backoff mechanisms:
When Quick6TiSCH detects packets from other nodes for col-
lision avoidance, incrementing the retransmission count would
be inappropriate, as the detection does not signify transmission
impossibility but rather intentional postponement. Therefore,
we propose modifying the TSCH operation for Quick6TiSCH,
ensuring that when a busy channel is detected via CCA within
the common shared cell and no transmission is attempted, the
retransmission count remains unchanged. Despite maintaining
an unchanged retransmission count, Quick6TiSCH allows the
backoff mechanism to operate as usual. This is necessary
because the detection of packets from other nodes within a
common shared cell indicates a need for contention resolu-
tion. Quick6TiSCH introduces a random backoff mechanism
for broadcast packets too, extending the behavior previously
applied only to unicast packets.

In default TSCH, backoff counter decreases per every
scheduled slot (cell), triggering retransmission when it hits
0. During network formation, cells other than the common
shared cell might be scheduled. In such cases, the backoff
counter decreases not only in the common shared cell but
also in the other cells. This additional decrease could diminish
Quick6TiSCH’s congestion mitigation efficacy. For instance, if
the counter hits 0 before the next common shared cell, retrans-
mission would occur immediately without effectively resolving
contention. To address this issue, we propose an additional
per-slotframe backoff operation. It updates the per-slotframe

backoff exponent/counter alongside the original backoff, but
decreases the counter only at the common shared cell. Access
to the common shared cell is granted only when the per-
slotframe backoff counter is 0. This ensures that the backoff
counter, set based on congestion in the common shared cell,
reflects its evolution only, enabling Quick6TiSCH to more
effectively mitigate congestion within the common shared cell.
Policy for packets awaiting transmission: Quick6TiSCH
prevents collisions within common shared cell by refraining
from attempting packet transmission when other transmissions
are detected. However, this advantage comes with a downside:
packets awaiting transmission must be buffered, potentially
leading to longer storage times compared to the default
TSCH. Given the typically small buffer sizes of 6TiSCH
devices, this could result in overflow. To address this issue,
Quick6TiSCH includes a packet management policy. Specif-
ically, Quick6TiSCH replaces buffered packets with newly
created packets of the same type when their sequence does
not matter, such as TSCH EB and RPL DIO. By doing so,
Quick6TiSCH not only avoids collisions in common shared
cells but also prevents buffer overflow and ensures the delivery
of latest packets, facilitating swift network formation.

V. EVALUATION

We evaluate Quick6TiSCH against state-of-the-art studies
for fast 6TiSCH network formation on a large-scale testbed.

A. Implementation and experiment setup

We implement Quick6TiSCH1 on M3 board using Contiki-
NG2 [13]. For the baseline scheme, we utilize the 6TiSCH-
MC [16] scheduler implementation in Contiki-NG. As com-
parison schemes, we implement DRA [19] and TRGB [23]
in Contiki-NG. Slot length is set to 10 ms by default. For
channel hopping, Quick6TiSCH, 6TiSCH-MC, and DRA uses
four IEEE 802.15.4 channels (15, 20, 25, 26) while allowing
TRGB to use all sixteen IEEE 802.15.4 channels as in their
paper. While the others have a maximum EB sending interval
of 16 seconds, TRGB has a 4-second interval (i.e., four times
more EB messages generated) as in their original paper. At
the routing layer, we employ RPL storing mode [26] and use
MRHOF with ETX [27] as the objective function. DAO-ACK
option in RPL is enabled. Tx power is set to -17 dBm.

For Quick6TiSCH, we implement five different transmission
time offsets and corresponding CCA operation within the
slot. To enable operation with multiple offsets while main-
taining synchronization, the indices of the utilized offsets are
encapsulated as an information element (IE) into the every
packet transmitted via the common shared cell. Regarding
the criteria for determining the criticality of EB and DIO
messages (Table I), we set the parameter k to 2 considering the
existence of nodes that fail to hear the first message. We utilize
TSCH’s macMaxFrameRetries parameter [2], which defines
the maximum number of transmission attempts allowed for a

1https://github.com/Hongchan-Kim/Quick6TiSCH
2https://github.com/iot-lab/iot-lab-contiki-ng
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Fig. 8: Node deployment topology at Lille testbed. The node located
at the upper left corner and marked in yellow serves as the root.
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Fig. 9: Time evolution of transmissions and unicast packet delivery
ratio within the common shared cell for Quick6TiSCH and 6TiSCH-
MC [16]. (M) and (Q) are state transition time for 6TiSCH-MC and
Quick6TiSCH, respectively.

packet at the MAC layer, as the constant P for prioritization
based on transmission status. In Contiki-NG, once a node
enters the TSCH joined state upon receiving an EB message,
it transmits a keep alive (KA) message to achieve clock drift
correction at least once unless clock drift is corrected by
transmission or reception of any packet. Failure to do so causes
the node to revert back to the new node state. Therefore, we
classify KA message as critical only before synchronization is
achieved; once clock drift has been corrected at least once, it
is considered non-critical.

We conduct experiments on the FIT/IoT-LAB testbed, a
large-scale public testbed located in Lille. The physical de-
ployment topology of the 83 nodes is illustrated in Fig. 8. The
nodes are almost evenly distributed in a rectangular grid shape,
forming a 3∼4 hop topology. With this setup, we measure the
network formation performance for each scheme, ten times for
each experimental case.

B. Performance of Quick6TiSCH: an overview

First, we examine whether Quick6TiSCH mitigates con-
tention within the common shared cell during network for-
mation and reduces the network formation time as intended.

Fig. 9 shows the result. Fig. 9a depicts the number of nodes
attempting transmissions in the common shared cell over time,
as well as the time at which all nodes transition to the TSCH
joined, RPL joined, and fully joined states for Quick6TiSCH.
Quick6TiSCH demonstrates time evolution distinct from that
of 6TiSCH-MC (Fig. 5). Messages critical for state transitions,
such as EB, DIO, and DAO, are transmitted in a priori-
tized manner, blocking transmissions of non-critical packets.
Consequently, at the beginning of network formation, fewer
packets are transmitted compared to 6TiSCH-MC, effectively
mitigating congestion and avoiding collisions. This results in
a swift transition to the fully joined state, taking 20.6 minutes,
which is less than half of the 46.12 minutes shown in Fig. 5
for 6TiSCH-MC.

Fig. 9b illustrates the reason behind Quick6TiSCH’s swift
network formation. Specifically, it shows the unicast packet
delivery ratio within the common shared cell during net-
work formation, for Quick6TiSCH (Fig. 9a) and 6TiSCH-MC
(Fig. 5), respectively. Thanks to Quick6TiSCH’s prioritiza-
tion of critical packets and collision avoidance, Quick6TiSCH
consistently exhibits a higher delivery ratio compared to
6TiSCH-MC. We observe similar trends for broadcast packets
as well. By successfully delivering packets, Quick6TiSCH
quickly completes the state transitions necessary for network
formation. Even after all nodes have transitioned to the fully
joined state at least once, network formation-related packets
may still be generated, for example, due to RPL topology
maintenance or TSCH synchronization maintenance. In these
cases, Quick6TiSCH maintains a higher packet delivery rate
by prioritizing the critical packets and avoiding collisions.

C. Performance of Quick6TiSCH: a comparative study

We compare Quick6TiSCH against other state-of-the-art
studies for fast 6TiSCH network formation, DRA [19] and
TRGB [23], in terms of network formation time, control
overhead, and duty cycle.
Network formation time: Fig. 10a plots the network forma-
tion time. In each case, the outermost bar represents the point
at which all nodes have reached the fully joined state at least
once. The inner white and pink bars represent the points at
which all nodes have reached the RPL joined and TSCH joined
state, respectively, at least once for the corresponding scheme.
Commonly, as the slotframe size increases, the common shared
cell becomes scarcer, leading to more collisions and longer
network formation times.

Quick6TiSCH significantly outperforms the other three
schemes in terms of network formation time regardless
of the slotframe size. This improvement is attributed to
Quick6TiSCH’s autonomous prioritization of formation-critical
packets, which effectively mitigates collisions in the common
shared cell and ensures prompt delivery of the critical packets.
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Fig. 10: Network formation time, overhead, duty cycle for different
slotframe sizes. Above a slotframe size of 67, TRGB [23] shows
a long formation time exceeding 120 minutes, indicating malfunc-
tioning. We measure the overhead and duty cycle up to that point.

In the case of DRA, network formation is not much faster
than 6TiSCH-MC; rather, it is similar or slower. In the case of
TRGB, it achieves faster network formation than 6TiSCH-MC
only when the slotframe size is small (e.g., 11). However, as
the slotframe size increases, the time to reach fully joined state
increases drastically, even exceeding 120 minutes.

Both DRA and TRGB rely on negotiation between nodes
which hinders their network formation performance. DRA fails
to operate effectively due to severe congestion in the common
shared cell which prevents successful negotiation. As a result,
DRA rarely adjusts resources according to traffic demands.
Even more, the scarce adjustments are not coordinated among
neighboring nodes, causing a mismatch in resource allocation
between neighboring nodes leading to transmission failures.
These transmission failures accumulate and ultimately increase
network formation time. As a result, DRA does not perform
better than 6TiSCH-MC.

TRGB also suffers from inefficiencies due to its negotiation-
based approach. It divides the common shared cell into three
time-domain resources: Red cell for broadcasting routing
packets, and Green and Blue cells for transmitting/receiving
other types of packets. While the Red cell is always avail-
able, access to the Green/Blue cells for transmission depends

on indications from the RPL parent. Until then, access to
Green/Blue cells is limited to reception only. During network
formation, routing topology changes can render a node unable
to use Green/Blue cells, requiring new indications. Since a
node’s access to Green/Blue cells depends on its parent node’s
availability, even a single topology change can render these
cells unusable for all descendant nodes until new indica-
tions propagate downward, causing delays. Consequently, the
Red cell becomes the sole functioning communication path.
However, in practical 6TiSCH networks, messages other than
broadcast routing information must also use the Red cell,
worsening its congestion. For instance, a no-path DAO for
a non-RPL parent node must be sent via the Red cell due
to uncertainty in Green/Blue cell reception availability. This
results in fewer successful message transactions within the Red
cell, leading to failures not only in TRGB negotiation but also
in synchronization. Overall congestion significantly prolongs
network formation times. Thus, despite configuring TRGB to
use more channels and generate more EB messages than other
schemes, TRGB fails to achieve its intended performance.

The discussion above reinforces our argument favoring
autonomous methods to facilitate 6TiSCH network formation.
The slow pace of 6TiSCH network formation is primarily
due to severe congestion in common shared cells. Attempting
to resolve this congestion through negotiations over already
congested shared cells only exacerbates the issue. Therefore,
autonomous methods like Quick6TiSCH should be prioritized.

Overhead during network formation: Fig. 10b plots the
overhead (i.e., average number of control packets) during
network formation. We count all control messages until all
nodes reached the fully joined state at least once. Then we
normalized the number of control packets by the number
of nodes and the formation time. As shown in the figure,
Quick6TiSCH incurs a smaller or similar control overhead
compared to other schemes. TRGB shows a steeper decrease
in overhead compared to other schemes as the slotframe length
increases. However, this does not indicate that TRGB operates
more efficiently. Instead, it reflects TRGB’s inability to utilize
resources due to failed negotiations and subsequent packet
transmission failures. Consequently, nodes fail to exchange
packets, lose synchronization, and revert to the new node state.
This prevents the generation of control messages that would
typically occur in subsequent states, reducing the measured
overhead.

The results show that as the common shared slotframe size
increases, the overall amount of control overhead decreases.
Generally, generation of periodic broadcast control packets in
the 6TiSCH network decreases over time [28]. Additionally,
generation of on-demand control packets also becomes less
frequent as network formation progresses. As the slotframe
size lengthens, the formation time becomes longer. As a
result, the time average amount of control overhead decreases.
We note that Quick6TiSCH achieves the shortest network
formation time, meaning the generation rate of control packets
during network formation would be the highest among all
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schemes. Despite this, Quick6TiSCH showing similar over-
head to other schemes indicates that Quick6TiSCH effectively
utilizes the control overhead, resulting in efficient and swift
network formation.
Energy efficiency (duty cycle) during network formation:
Fig. 10c illustrates the average duty cycle among nodes during
network formation. In default TSCH, nodes typically remain
in sleep mode and wake up only at a single point within a
slot for radio activities like packet transmission or reception.
In contrast, Quick6TiSCH allows radio activities at up to
five different positions within a slot. From the perspective
of a transmitter node, the single wakeup per transmission
remains unchanged. But there may be instances where an
additional CCA is required, potentially increasing the duty
cycle. From the perspective of a receiver, monitoring five
potential radio activity regions increases duty cycle slightly.
However, this increase significantly reduces network formation
time (Fig. 10a), a cost worth paid. Furthermore, it is important
to note that increased duty cycle need not be permanent. After
completing network formation, Quick6TiSCH may return to
default TSCH common shared cell operation.

On the other hand, TRGB exhibits a significantly lower duty
cycle compared to other schemes above a slotframe size of
29. This is because TRGB fails in negotiation as slotframe
size increases, rendering its two-thirds resources (i.e., Green
and Blue cells) unavailable most of the time. While TRGB
nodes still attempt reception within these resources, since most
nodes cannot use them, there are no packets to receive and the
reception period ends prematurely, resulting in a much lower
duty cycle. Thus, TRGB’s low duty cycle does not indicate
efficiency but rather highlights its ineffective operation.

VI. CONCLUSION

This work proposed Quick6TiSCH to accelerate the forma-
tion of 6TiSCH networks. Quick6TiSCH assigns higher prior-
ity to messages critical for network formation depending on
the state of each node, and enhances efficiency by mitigating
collisions and congestion during network formation. Through
implementation on real embedded devices and extensive eval-
uation on a sizable testbed, we have successfully validated
the effectiveness of Quick6TiSCH in significantly reducing
network formation time. These findings contribute to compre-
hensive understanding and optimization of 6TiSCH network
formation, enabling faster and more reliable deployment.
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