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Abstract—As the emerging Internet of Things (IoT) devices and
applications flourish, demand for reliable and energy-efficient
low-power wireless network protocols is surging. For this pur-
pose, IEEE 802.15.4 standardized time-slotted channel hopping
(TSCH), a promising and viable link-layer solution that has
shown outstanding performance achieving over 99% reliability
with low duty-cycles. However, it lacks one thing, flexibility. It
is not adaptable to a wide variety of applications with varying
traffic load and unpredictable routing topology due to its static
timeslot scheduling. To this end, we propose OST, an On-demand
Scheduling scheme for TSCH with traffic-awareness. In OST,
each node dynamically self-adjusts the frequency of timeslots at
run time according to time-varying traffic intensity. Moreover, it
features on-demand resource allocation to handle bursty/queued
packets in a timely manner. By doing so, OST aims to minimize its
energy consumption while guaranteeing reliable packet delivery.
We evaluate OST on a large-scale 72-node testbed, demonstrating
that it achieves improvement of 60% in reliability and 52% in
energy-efficiency compared to the state of the art.

Index Terms—Low-power and Lossy Network, IEEE 802.15.4,
TSCH, Dynamic Scheduling, Wireless Network Protocol

I. INTRODUCTION

Adaptive resource scheduling in a time-synchronized wire-
less network (i.e., TDMA) has been a long-loved research
topic in the communications field. Numerous sophisticated
scheduling techniques [1][2][3] have been developed consid-
ering various different aspects, such as throughput, energy
efficiency, fairness, and QoS. These adaptive scheduling tech-
niques have mainly contributed to wireless cellular systems
built on very powerful base-station infrastructure. In many
other cases, however, such as low power and lossy networks
(LLNs), realizing these techniques with real embedded hard-
ware and operating system has never been easy. Easier said
than done.

LLN connects numerous low-power resource-constrained
devices via multihop wireless links. With versatile applications
such as environment monitoring, factory automation, and
smart buildings, LLN is considered as a building block of the
Internet of Things (IoT) and cyber-physical systems (CPS).
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Due to its strict resource constraint and time-varying topology,
however, LLN has been a representative example where apply-
ing adaptive resource scheduling is difficult and inefficient. In
addition to the fundamental question, “How much resource
should be given to each node at each time to minimize
energy expenditure while coping with traffic load?”, there are
several strong requirements in LLN such as simple distributed
operation, collision resolution, modest control overhead, and
seamless service regardless of routing topology change. Due
to the non-trivial challenges, asynchronous CSMA [4][5] and
(almost) fixed TDMA scheduling [6][7] have been standard
practice in this regime despite their clear limitations. The latter
became viable in the LLN community just recently, regarded
as a breakthrough.

These simple techniques perform fairly well in traditional
LLN applications which generate fixed and low-rate traf-
fic [6][8]. As part of fast growing IoT and CPS, however,
traffic demand for LLNs has increased and diversified while
the energy constraint is still strict [9][10][11][12]. In addition,
it has been more common that a single node runs multiple
applications [13][14]. Then each LLN node should deliver
different and time-varying amount of traffic depending on ap-
plication behavior, physical location, node density, and routing
topology. Given that neighboring technologies, such as embed-
ded hardware [15], system architecture [16], security [17], and
machine learning [18], have also evolved to support various
needs of modern LLN applications, it is time to tackle the
adaptive scheduling issue for LLNs to move forward. To this
end, it is important to understand that, historically, success
of an LLN protocol has usually come from not only a novel
concept but also a fine-grained/comprehensive system design
and careful implementation on resource-constrained devices.

We present a detailed design, implementation, and ex-
perimental analysis of OST , a novel adaptive TDMA slot
scheduling technique for LLNs operating on the time-slotted
channel hopping (TSCH) protocol in the latest IEEE 802.15.4
standard [19]. OST manages communication slots for each
directional link (i.e., a pair of a sender and a receiver) sepa-
rately, in a distributed manner. To meet various traffic demand
effectively, OST adopts two-step adaptive slot provisioning
as follows. (1) Periodic provisioning allocates a periodic slot
for each directional link and adapts the period according to



the link’s average traffic load. To this end, a novel binary
resource tree is used to avoid slot collision among different
directional links. (2) On-demand provisioning temporarily
allocates additional consecutive slots for a directional link to
handle an unexpected traffic burst immediately. OST ensures
that those slots do not collide with other slots being used.
Overall, OST timely provides ‘just enough’ slots for each
directional link without any additional control overhead, which
minimizes energy consumption without sacrificing reliability.

We implement OST on embedded IEEE 802.15.4 nodes
using ContikiOS [20]. OST tightly interacts with the routing
layer running RPL [21], an IPv6 standard routing protocol
for LLNs, to reliably deliver routing control packets while
routing topology changes dynamically. We evaluate OST on
72 nodes in FIT/IoT-LAB [22], a public LLN testbed. Results
show that OST outperforms state-of-the-art TSCH scheduling
techniques, improving up to 60% reliability while saving 52%
energy under various traffic demands. To the best of our
knowledge, OST is the first adaptive scheduling technique for
TSCH which reliably operates with RPL routing protocol on
a real-world multihop testbed.

The contributions of this work are threefold.
• We propose OST , the first practical and adaptive scheduling

technique for TSCH demonstrated on a real-world LLN
testbed. It comprises (1) periodic provisioning to adapt
to time-varying average traffic load, and (2) on-demand
provisioning to handle temporary traffic bursts.

• We design OST in a distributed manner with zero control
overhead, and introduce a novel binary resource tree for
collision-free slot allocation.

• We implement OST prototype, open the source code, and
evaluate extensively on a large-scale testbed showing that
OST outperforms state of the art in terms of reliability and
energy efficiency.

II. BACKGROUND

This section provides an overview of TSCH standard and
the state of the art in TSCH slot scheduling.

A. IEEE 802.15.4 TSCH

As a recent link-layer protocol in IEEE 802.15.4 [19],
TSCH contributes to the LLN regime in two ways: (1) It
time-synchronizes the entire multihop LLN, avoiding energy
waste attributed to redundant transmissions or idle listening
in contrast to previous asynchronous MACs [4][5]. (2) Its
frequency hopping feature makes low-power wireless links
more robust to wireless interference and multipath fading [23].

As illustrated in Fig. 1, TSCH divides time into timeslots,
each of which is typically 10 ms, long enough to exchange a
data frame and an acknowledgement (ACK). Each timeslot has
absolute slot number (ASN), representing how many timeslots
have elapsed since the TSCH network began. A slotframe is
a collection of timeslots, and is repeatedly scheduled in time.
The number of timeslots in a slotframe is called slotframe size
(Ssf). Time offset (offsettime) of a timeslot indicates its relative
position within a slotframe (i.e., ASN % Ssf). Channel offset

Fig. 1. An example of TSCH slotframe schedule with slotframe size of 3.

(offsetchannel) is an offset for channel selection. The channel on
which a timeslot operates is calculated as,

Channel = Listc[(ASN + offsetchannel) % NListc ] (1)

where Listc is a set of channels to be used and NListc is the
number of its elements. As ASN progresses, each timeslot with
a fixed offsetchannel hops over different frequency channels.
Allocation of different offsetchannel enables distinct channels to
be exploited in the same ASN, as timeslots for directional links
[A→B] (i.e., from sender A to receiver B) and [D→E] operate
in Fig. 1. A TSCH timeslot experiences packet collision when
multiple nodes try to send packets in it. In this case, CSMA
backoff and retransmission mechanisms are activated to avoid
collision where the unit of backoff time is timeslot.

B. The State of the Art in TSCH Timeslot Scheduling

A number of works have investigated timeslot scheduling
for TSCH, which are categorized into centralized, distributed,
and autonomous scheduling. Most centralized and distributed
scheduling proposals operate adaptively at run time, but have
never been successfully demonstrated on real testbeds with
real routing protocols unfortunately (Section VI). We focus
on autonomous scheduling techniques which are considered
as the state of the art and proven to run on multihop LLN
testbeds with publicly opened source codes.

Orchestra [6] is an autonomous scheduling scheme designed
to operate tightly with RPL [21], regarded as a breakthrough
in this regime. Orchestra decouples data transmission from
control packet transmission by using multiple slotframes with
dedicated channel offsets: (1) EB (Enhanced Beacon) slot-
frame for TSCH control packets, (2) RPL shared slotframe for
RPL control packets, and (3) unicast slotframe for data pack-
ets. While timeslot schedules in the two control slotframes are
globally fixed, those in the unicast slotframe change depending
on neighbor relationship. In doing so, Orchestra uses neighbor
information (e.g., node’s address) at the routing layer so that
each node schedules unicast timeslots autonomously without
any control packet exchange, which is the main difference
compared to other centralized/decentralized schemes.

Orchestra provides two modes for scheduling timeslots in
the unicast slotframe, sender- and receiver-based modes, where
each node has only one fixed Tx or Rx timeslot per unicast
slotframe, respectively, based on its MAC address as,

offsettime = h(MAC) % Ssf (2)

where h is a shared hash function, MAC is the node’s address,
and Ssf is the unicast slotframe size. Since the same h is shared



throughout the network, a node can easily compute the timeslot
for each neighbor using its MAC without control packets. As a
result, each node in sender- (or receiver-) based Orchestra has
one Tx (or Rx slot) with multiple Rx (or Tx) slots, as many
as the number RPL neighbors, within a unicast slotframe.

ALICE [7] stepped forward. It is built on Orchestra’s slot-
frame architecture but proposes more advanced autonomous
scheduling for the unicast slotframe by allocating a separate
timeslot for each directional link (a pair of a sender and a
receiver). Thus, each ALICE node has multiple Tx and Rx
slots as many as the number of RPL neighbors. ALICE also
features multi-channel utilization, time-varying timeslot allo-
cation, and early packet drop, significantly outperforming both
modes of Orchestra while preserving autonomous operation.

III. TOWARDS PRACTICAL ADAPTIVE SCHEDULING

While state of the art autonomously provides a unicast
timeslot with a different time offset for each node or direc-
tional link, none of them adjust the number of unicast timeslots
at run-time, which limits their applicability in emerging LLN
applications. To the best of our knowledge, the research com-
munity does not have a practical adaptive scheduling algorithm
for TSCH in multihop LLNs yet (other than TESLA [24], a
variant of Orchestra), which is the problem we target to tackle.

A. Need of Adaptive Scheduling in LLNs

Before going into the OST design, we should first answer
the question: “Why is it necessary to have an adaptive schedul-
ing algorithm in LLNs?” Here are some examples below:

Location: Nodes near the border router have to deliver more
traffic than those at the edge due to relay burden. This
asymmetry becomes more severe as the network size increases.

Node density: Physical node distribution is not necessarily
even. Even with a perfectly even deployment, it is still uneven
in the perspective of wireless connectivity due to various
factors impacting wireless channels, such as obstacles. Nodes
in a denser area are likely to deliver more traffic.

Routing topology: A routing protocol may not produce bal-
anced routing topology even when physical node distribution
is balanced. RPL is known to have load imbalance problem,
which causes a few bottleneck nodes to have much more relay
burden than others [25]. In addition, routing topology changes
over time as wireless links fluctuate, which makes a node’s
traffic demand also change over time.

Application behavior: Each node in an LLN application may
have different and time-varying traffic demand. In a smart
building, for example, a temperature sensor generates light
periodic traffic but an anemometer generates heavy continuous
traffic [10]. A node’s application traffic may change at run
time due to event detection [12][26]. A node can run multiple
applications [13][14]. A reporting strategy, e.g., sending each
of data packets immediately or aggregating them and sending
as a batch, impacts traffic demand at run time [27].

If the number of unicast timeslots a node use for each direc-
tional link does not change flexibly according to its real-time

traffic demand, the node will encounter either of the two unde-
sirable situations: (1) wasting energy due to over-provisioned
timeslots, or (2) losing data due to under-provisioned times-
lots. The state-of-the-art autonomous scheduling techniques,
i.e., Orchestra and ALICE, are not exceptions.

B. Design Requirements for Practical Adaptive Scheduling

With the above motivation, the next question is: “What char-
acteristics should an adaptive scheduling algorithm have so
that it can be applied to multihop LLNs practically?” Ideally,
it should provide adaptive scheduling capability while keeping
all the positive characteristics of autonomous scheduling. To
this end, we consider five requirements that will be used as
the design elements of OST in Section IV.

Handling each directional link separately: A directional link
is the basic unit where a transmission happens. Given that
each directional link can have different, time-varying traffic
demand, handling multiple links identically results in non-ideal
performance. ALICE already proved the superiority of this
approach under fixed-rate traffic. Adaptive timeslot scheduling
should also keep this principle.

Fast response to time-varying traffic demand: An adaptive
scheduling algorithm should be able to cope with unexpected
time-varying traffic. When a link suddenly has many packets to
send, more timeslots should be allocated as soon as possible
before the sender experiences queue overflow. Otherwise, it
should fast de-allocate timeslots to avoid energy expenditure.

Distributed operation with modest control overhead: The
success of Orchestra and ALICE comes from their autonomous
operation with zero control overhead. Adding fast and adaptive
scheduling capability should not ruin this characteristic.

Timeslot collision avoidance: The flip side of distributed or
autonomous scheduling is that each link’s timeslot is allocated
without any global information, which may incur timeslot
collision among multiple links. Orchestra and ALICE exploit
a hash function to reduce such a collision, which is only
probabilistic and fails under high load. Adaptive scheduling
should systematically manage timeslot collision.

Tight interaction with routing: It is necessary for adaptive
scheduling to provide seamless service under dynamic routing
topology. To this end, when a node changes its routing parent,
its unicast timeslots to communicate with the new or old parent
should be fast allocated or de-allocated. More importantly, for
a smooth transition, control packets to setup a new parent-
child relationship need to be reliably delivered, which happens
before a timeslot is allocated for the new parent.

IV. OST DESIGN

OST is designed to satisfy the five requirements of practical
TSCH scheduling, described above. OST manages timeslots
separately for each directional link, and adapts the number
of unicast timeslots for each directional link. OST takes
a two-step approach, periodic provisioning and on-demand
provisioning, both of which operate in a distributed manner



with zero control overhead and nearly zero timeslot collision.
In addition, the two schemes compensate each other, meeting
the demand of average traffic and instantaneous traffic bursts.

A. Slotframe Architecture

OST’s slotframe architecture is designed to add adaptive
scheduling capability while supporting robust TSCH/RPL op-
eration under dynamic routing topology. Its main contribution
is to combine different scheduling techniques in a synergistic
manner, providing a firm ground for OST’s adaptive operation.
While maintaining the two control slotsframes in Orchestra
and ALICE, i.e., EB and RPL shared slotframes, with their
constant channel offsets,1 OST has three types of unicast
slotframes for adaptive scheduling:
• Autonomous unicast slotframe (AUS) is for autonomous

unicast with a constant periodicity and a dedicated channel
offset. Each node has one AUS.

• Periodic-provisioning Tx slotframe (PTS) is for unicast
transmission to a routing neighbor, with an elastic period-
icity and channel offset. Each node has as many PTS’es as
the number of its routing neighbors.

• Periodic-provisioning Rx slotframe (PRS) is the same as
PTS except that this is used for reception.
The autonomous slotframe AUS has a dedicated channel

offset and operates as receiver-based Orchestra,2 which is the
key for OST’s seamless service since it compensates weak-
nesses of both control slotframes and PTS/PRS. Specifically,
AUS handles unicast TSCH/RPL control packets not only for
their reliable delivery but also contention alleviation in the two
control slotframes which handle all nodes’ broadcast control
packets. In addition, AUS handles data packets temporarily if
a PTS-PRS pair are not yet installed for a directional link.
For example, when a node changes its routing parent due to
wireless environment changes, it uses AUS to send a RPL
DAO packet to the new parent for setting up a new parent-
child relationship, and also data packets to the parent until a
PTS-PRS pair are installed for the link.

Each directional link has a PTS at the sender and a PRS at
the receiver to react to its dynamic traffic demand. Specifically,
an OST node (A) manages a PTS for a routing neighbor (B),
and the PTS has one Tx slot. Node A adjusts its own PTS
size dynamically according to its unicast Tx demand for its
neighbor B. On the other hand, neighbor B has a PRS for
node A, and the PRS has an Rx slot matching the Tx slot in
the node A’s PTS. Node B adjusts its PRS size according to
node A’s PTS size. After a parent switch in RPL, two new
PTS-PRS pairs are installed for two directional links between
the new parent and child, while the previous PTS-PRS pairs
between the outdated parent and child are removed.

1As ALICE does, OST dedicates a channel offset for the EB slotframe but
not for the RPL shared slotframe, which does not sacrifice robust operation [7].

2AUS inherits receiver-based Orchestra, instead of sender-based Orchestra,
since the unicast slotframe of the former is more autonomous. When a node
(A) needs to receive a packet from its neighbor (B), sender-based Orchestra
requires A to already have B in its routing neighbor list to install an Rx slot
for A. In contrast, receiver-based Orchestra enables A to receive a packet
through its fixed Rx slot without even knowing B’s existence.

B. Periodic Provisioning

Periodic provisioning periodically adapts unicast timeslots
in a PTS and a PRS according to average traffic load of each
directional link. By using statistical information, periodic pro-
visioning operates relatively slowly but robustly. A sender and
a receiver of a directional link take different roles, determining
the size of the PTS/PRS and the time offset for a Tx/Rx slot
in the PTS/PRS, respectively. The former is to meet the link’s
traffic demand and the latter is to avoid timeslot collision
with other links. Finally, a negotiation procedure ensures that
the two nodes agree on applying new PTS/PRS configuration.
Note that the scheduling information is exchanged through
existing data or ACK packets, resulting in zero additional
control packets.

The operation described in the rest of the subsection applies
to each of all directional links. For ease of description, we
consider a directional link from a sender A to a receiver i
(i.e., link [A→i]) where the two nodes are routing neighbors
to each other, as an example.

Traffic-aware PTS/PRS Size Adaptation (Sender):
PTS/PRS size of a directional link determines how much
traffic the link can deliver. Given that the sender knows the
exact traffic demand for the link, PTS/PRS size adaptation
runs at the sender.

For a link [A→i], sender A measures average traffic load
towards receiver i for each period T . Let L(A, i) denote the
traffic load (number of unicast packets) for link [A→i]. For
each period T , sender A first initializes L(A, i) to 0 and
increases L(A, i) by one whenever it enqueues a unicast packet
for transmission to receiver i. At the end of the period, sender
A calculates the average number of timeslots between two
consecutive unicast transmissions towards receiver i, called
average inter-packet slots (IPS), as

IPS(A, i) = nT /L(A, i) (3)

where nT is the total number of timeslots in the time duration
T . Then, sender A determines the size of its PTS for receiver
i as 2N(A,i), where N(A, i) is a natural number satisfying
2N(A,i) ≤ IPS(A, i) < 2N(A,i)+1. Note that we use power
of two for the PTS size to exploit a binary resource tree, which
will be described later in this section.

Lastly, sender A piggybacks N(A, i) on unicast packets
destined to receiver i in order for node i to update its PRS
size for sender A accordingly.

Collision-free Time Offset Allocation (Receiver): Next,
time offset (offsettime) of a Tx (or Rx) slot in a PTS (or
PRS), i.e., offsettime(A, i), should be decided for the link to
avoid timeslot collision. Given that packets are collided at the
receiver, time offset allocation is done first by the receiver (i)
by using N(A, i) delivered from the sender (A).

For this purpose, each node maintains a binary resource
tree as shown in Fig. 2(a), where a circle denoted with (n,t)
represents a periodic timeslot with a time offset t in the
slotframe of size 2n (i.e., offsettime=t and N=n). A resource
(n,t) in the binary tree can be divided equally into two



(a) The binary resource tree of node 1

(b) Timeslot schedules for four nodes. Tab and Rab are a Tx and an Rx slot
in PTS and PRS for directional link a→b, respectively.

Fig. 2. An example of a binary resource tree and pre-installed schedules,
where four nodes (i.e., nodes 1, 2, 3, and 4) form six directional links
(i.e., [1→2], [1→3], [1→4], [2→1], [3→1], and [4→1]).

resources of (n+1,t) and (n+1,t+2n). Each directional link
can use one of the resource circles in the binary tree for
its periodic provisioning (PTS or PRS). With the parent-child
relationship of the binary tree, a resource circle always collides
with any of its ancestors and partially collides with those in
its subtree. Thus, even if a resource circle is not directly taken
by any directional link, it is regarded not available when any
of its ancestors or subtree circles is taken. When selecting its
resource, a directional link utilizes this characteristic to avoid
timeslot collision in a distributed manner.

Consider again a directional link [A→i]. When receiver i
detects a new N(A, i) in a unicast packet sent from sender
A, it selects an available resource (n,t) in its binary tree with
n=N(A, i), and updates its PRS with size 2n and time offset
t (=offsettime(A, i)). Using the resource (n,t) guarantees no
timeslot collision, at least in view of the receiver i. After
installing PRS with the new time offset, receiver i piggybacks
offsettime(A, i) on an ACK for the unicast packet from sender
A.3 Then, sender A also updates its PTS with size 2N(A,i)

and time offset offsettime(A, i), which completes the periodic
provisioning process for link [A→i].

We exemplify this procedure using Fig. 2. In this example,
we assume there are four nodes (nodes 1, 2, 3, and 4). Node

3We designed to use Information Element (IE) field in the IEEE 802.15.4
frame to piggyback N (or offsettime) in unicast packets (or ACKs).

4 is the parent of node 1 whose 1-hop children are nodes 2
and 3, thus forming six directional links. Assume PTS/PRS
for link [4→1] is not scheduled yet, while the other five links
(i.e., [1→2], [1→3], [1→4], [2→1], and [3→1]) hold the five
resources, (4,2), (4,4), (2,3), (4,10), and (3,5), respectively. The
pre-installed resources and their timeslot schedules are shown
in Figs. 2(a) and 2(b), respectively. In Fig. 2(b), TAi (or RAi)
represents a Tx (or Rx) slot in PTS (or PRS) for link [A→i].

Assume node 1 gets a new N(4, 1)=3 in a unicast packet
from node 4. Then, node 1 investigates its resource tree
(Fig. 2(a)) which has 23=8 resources with n=3. However,
(3,5) is already taken by link [3→1]. Neither (3,2) nor (3,4) is
available since their subtree resources (4,2), (4,4), and (4,10)
are taken. In addition, (3,3) and (3,7) are not available since
their common parent resource (2,3) is pre-installed. Thus,
(3,0), (3,1), and (3,6) are available for the link [4→1] and
(3,6) is chosen in this example. Then node 1 installs the
PRS for resource (3,6) and informs node 4 of the new offset
offsettime(4, 1)=6. Lastly, node 4 installs PTS with resource
(3,6), as illustrated in Fig. 2(b).

Negotiation Procedure: Since we have two adaptive mecha-
nisms for PTS/PRS size and time offset, operating at sender
A and receiver i, respectively, a negotiation procedure is
necessary for both nodes to be on the same page. Specifically,
it aims to handle two cases of failures (receiver and sender
sides) of the periodic provisioning.

At the receiver side, if there is no available resource with
n=N(A, i) in receiver i’s resource tree when receiver i detects
a new N(A, i) from a packet sent by sender A, it maintains the
previous PRS and Rx slot (since sender A still has the previous
PTS and Tx slot) and piggybacks an invalid notification on the
ACK to notify sender A of the denial. Then sender A retries
with N(A, i) increased by one and repeats the process until
receiver i accepts with a valid time offset.

Sender-side allocation failure occurs after receiver i suc-
cessfully installs the PRS. Although receiver i did its best to
allocate a collision-free time offset offsettime(A, i) based on the
current status of its resource tree, A’s resource tree may have
different status. Then offsettime(A, i) may not be available to
sender A. In this case, A removes the previous PTS and Tx slot
(because i already updated PRS). Then, when sending a next
unicast packet to i, A sets a bit indicating that the resource is
not available, letting i select another available offsettime(A, i).
Importantly, this packet is sent on AUS, given that A’s PTS
does not exist. This negotiation process is repeated until sender
A agrees on offsettime(A, i) given by receiver i.

C. On-demand Provisioning

Since periodic provisioning operates based on statistical
information, it cannot react to unexpected traffic bursts im-
mediately. To fill this gap, OST allows a directional link to
allocate additional temporary timeslots when there are queued
packets at the sender, called on-demand provisioning.

Consider a directional link [A→i] again. When sender A
sends a unicast packet (p1) on a timeslot (ASN=t1) towards
receiver i, it checks whether there is another unicast packet



(p2) for i in the Tx queue. If so, before transmitting p1, A
creates a subsequent timeslot schedule (STS) by looking into
all its slotframes. An STS consists of sizeSTS bits, where the
k-th bit indicates whether A has a reserved schedule on the
timeslot with ASN=t1+k by any slotframe. If the timeslot is
reserved, the k-th bit is set to 1. Otherwise, it is set to 0. Then,
the STS is piggybacked on p1 with its frame pending bit set.

If receiver i receives p1 in ASN=t1 and detects the frame
pending bit set, it also generates its own STS starting from
ASN=t1+1, and compares it with the STS of A (piggybacked
on p1). Receiver i finds the earliest 0 bit in both STS’es of
nodes A and i (namely, m-th bit). This means neither A nor
i has any timeslot scheduled in ASN=t1+m. Then, receiver i
piggybacks the earliest bit’s position m on the ACK for p1, and
schedules a temporary Rx slot in ASN=t1+m. Upon receiving
the ACK in ASN=t1, sender A allocates a temporary Tx slot
in ASN=t1+m immediately, which enables the link [A→i] to
deliver p2 in ASN=t1+m without timeslot collision with any
slotframe in both nodes A and i (including PTS/PRS).

This on-demand provisioning occurs recursively until sender
A has no packet to send to receiver i. For example, if A has
more packets for i other than p2, it generates another STS
starting from ASN=t1+m+1 and piggybacks this when sending
p2 in ASN=t1+m. Given that STS and m are piggybacked on
unicast and ACK packets, respectively, no additional control
packet is required.

Let’s take Fig. 2(b) as an example to clarify the on-demand
provisioning procedure. Assume, in ASN=4, node 1 is about
to send a unicast packet (p1) to node 3 while having another
unicast packet (p2) in its Tx queue for node 3. Then, it
piggybacks its STS of “11100110” (sizeSTS is assumed 8 bits)
on p1. Then, node 3 receives p1 in ASN=4 and compares the
piggybacked STS with its STS (“10000000”). As a result, m
becomes 4, and node 3 installs a Rx slot in ASN=4+4=8. After
m (=4) is delivered to node 1 on the ACK for p1 by node 3,
node 1 allocates a Tx slot in ASN=8. At last, they will send
and receive p2 in ASN=8.

D. Multi-channel Operation

Although the periodic provisioning (PP) and on-demand
provisioning (ODP) avoid timeslot collision among RPL
neighbors, collision among physical neighbors (not necessarily
RPL neighbors) may still occur. This happens more often when
traffic is heavy since OST almost fully utilize unicast timeslots.
To enlarge network capacity, OST uses multiple channels for
the same timeslot. For PP, the channel offset of a directional
link’s PTS/PRS is computed as

offsetchannel,PP = h(ASFN + MACi) % (NListc − 2). (4)

OST uses the absolute slotframe number (ASFN) defined as
bASN/SPTS/PRSc [7], where SPTS/PRS is the slotframe size of
PTS/PRS. MACi is the address of receiver i of a directional
link. By hashing ASFN, each directional link’s channel offset
changes psuedo-randomly every slotframe, which prevents a
specific link from suffering continuous timeslot collision.

Given that ODP does not use the slotframe concept, the
channel offset for an on-demand unicast timeslot is set by
hashing ASN instead of ASFN as,

offsetchannel,ODP = h(ASN + MACi) % (NListc − 2). (5)

It is also changed every timeslot, preventing repetitive colli-
sion. Note that both equations use a modulo operator (%) with
NListc−2, instead of NListc , since OST dedicates two channel
offsets for the EB slotframe and AUS for robust operation.

V. PERFORMANCE EVALUATION

This section evaluates OST against the receiver-based Or-
chestra (RB), sender-based Orchestra (SB), and ALICE (AL)
in several dimensions to show its effectiveness.

A. Methodology and Experiment Setup

We implement OST on ContikiOS and open the code.4 We
use Contiki-RPL at the routing layer. Lengths of the EB and
RPL shared slotframes are set to 397 and 41, respectively, for
all the schemes. For OST , AUS size is 47, T is 15 seconds, and
sizeSTS is 8 bits. We set the upper limit of N as 8, leading to a
maximum PTS/PRS size of 256, in order for each directional
link to have a Tx/Rx slot per 2.56 seconds at least.

We use 72 nodes on the FIT/IoT-LAB open testbed [22]
in Grenoble, which are deployed uniformly in two line linear
topology. Each device uses Tx power of -17 dBm, resulting
in a 8-hop network. We use four channels, known to be
least interfered with Wi-Fi, for frequency hopping: 15, 20,
25, 26 (NListc=4). Each experiment lasts 1 hour, and the
results are averaged over 3∼5 runs for each case. An error
bar represents 95% confidence interval. Each node uses a
maximum of 8 retransmissions per hop, and queue size of 16
packets. Application payload is 59 bytes carried in UDP/IPv6
datagrams over 6LoWPAN, reaching frame size of 109 bytes.

B. Impact of Slotframe Size

We first investigate the impact of slotframe sizes on
RB/SB/AL, and compare them with OST . We generate bidirec-
tional traffic, 3/71 packets/sec for both upward and downward
traffic to/from the root from/to each node. Since there are 71
non-root nodes, aggregate traffic load from/to the root is 3
packets/sec for each direction.

Figs. 3(a) and 3(b) plot average end-to-end packet delivery
ratio (PDR) and radio duty cycle for 72 nodes, where the
number presented with each scheme is the slotframe size
employed. The figures show RB/SB/AL have a trade-off
according to the slotframe size. PDR is degraded while duty
cycle improves with the slotframe size. As an exception, duty
cycle of RB decreases and increases again due to excessive
channel contention with a single Rx slot within a slotframe,
showing significant PDR degradation. Within a slotframe,
since SB allocates more Rx slots (as many as the number
of RPL neighbors) than RB with a single Rx slot, SB has
better reliability with higher energy consumption than RB. AL
improves PDR of RB and SB by allocating more timeslots

4https://github.com/seungbumz/OST



(a) End-to-end packet delivery ratio (b) Radio duty-cycle (on time) (c) Empirical CDF of duty-cycle
Fig. 3. Various experimental results according to different slotframe size.

(a) End-to-end packet delivery ratio (b) Radio duty-cycle (on time) (c) End-to-end latency

(d) Number of packet losses during 1-hour experiment (e) Number of parent switch during 1-hour experiment
Fig. 4. Various experimental results according to different traffic load.

through scheduling per directional link. Nevertheless, AL
achieves lower duty cycle than SB since it mitigates channel
contention with time-varying and multi-channel scheduling.

OST outperforms all the others in terms of reliability and
energy efficiency for any configuration of their slotframe sizes.
Fig. 3(c) shows an empirical CDF of duty cycle among all
72 nodes for OST and RB/SB/AL with the slotframe size of
7 and 13, all of which achieve >99% PDR. In RB/SB/AL,
a longer slotframe achieves lower energy consumption, and
all their nodes have duty cycle of >1%. Meanwhile, OST
drastically reduces duty-cycles, where more than 80% of nodes
have <1%. Given OST also has perfect PDR, the result proves
that most of nodes in RB/SB/AL are over-provisioned with a
short slotframe size (e.g., 7 or 13) which is required only by a
few bottleneck nodes. On the other hand, OST does not over-
provision since each node adjusts the number of timeslots for
each directional link based on required traffic for itself.

C. Impact of Traffic Load
We investigate the impact of traffic load by changing the

aggregate rate from/to the root as in Fig. 4, from 3 to 18 pack-
ets/sec. We compare OST with RB13, SB13, and AL13, all of
which showed perfect PDR in the previous experiment.

In Figs. 4(a) and 4(b), as the traffic rate increases, PDR and
duty cycle for the static scheduling schemes start to degrade
rapidly. On the other hand, OST maintains much higher PDR
and lower duty cycle even under heavy traffic load. For

example, compared to AL13, OST shows PDR improvement of
60% and energy saving of 52% in the highest traffic intensity.

To analyze reliability of the protocols, Fig. 4(d) shows the
number of link losses and queue losses during the experiment.
Note that each RB node has one Rx slot and multiple Tx
slots within a slotframe while each SB node has one Tx slot
and multiple Rx slots. This makes RB and SB provide fewer
Rx and Tx opportunities, respectively. Consequently, in RB,
neighbors of a bottleneck node contend for a single Rx slot,
thus suffering from link losses first and then queue losses due
to CSMA backoff. On the other hand, SB mainly experiences
queue losses due to lack of Tx slots. ALICE allocates one Tx
slot and one Rx slot within a slotframe for a directional link,
thus having the same number of Tx/Rx slots. Nevertheless,
as traffic gets intense, ALICE also suffers from collisions and
CSMA backoff in the vicinity of bottlenecks as RB, leading
to link and queue losses. Link losses make RPL network
unstable, showing growth of the number of parent switches as
in Fig. 4(e). Then, RPL attempts to restore the RPL topology
by using more control packets, but it aggravates contention
more. However, OST avoids channel contention by enabling
each neighbor of a node to have non-overlapped dedicated Tx
slots, having few link losses and stable RPL network as shown
in Figs. 4(d) and 4(e). Compared to RB/SB/AL, OST also
reduces the number of queue losses considerably by allocating
more Tx/Rx slots for a directional link with heavy traffic.



(a) End-to-end packet delivery ratio (b) Radio duty-cycle (on time) (c) Average relative ratio of PP/ODP (d) Empirical CDF for ratio of ODP
Fig. 5. Performance of OST with burst traffic.

(a) End-to-end packet delivery ratio (b) Radio duty-cycle (on time) (c) End-to-end hop distance
Fig. 6. Various experimental results according to different topology.

Fig. 4(c) presents the average end-to-end latency for upward
and downward traffic. When the traffic load is low, OST
exhibits the longest delay since each link has PTS/PRS with
long periodicity (up to 256) to save energy. However, even
though the traffic load increases, OST maintains the latency
around 2 seconds by adopting shorter PTS/PRS and prompt
on-demand allocation. Meanwhile, RB/SB/ALICE show in-
creasing latency with traffic intensity due to lack of Tx/Rx
resources and CSMA backoff. Resultingly, OST ends up
with the lowest end-to-end delay from the traffic load of 8
packets/sec, despite not explicitly designed for latency.

D. Impact of Burst Traffic and On-Demand Provisioning

We analyze the contribution of on-demand provisioning in
handling traffic bursts, with a burst comprising B packets
where B varies from 1 to 8. The root sends downward bursts
to 71 non-root nodes in a round-robin fashion with a rate
of 5/B bursts/sec, and each node generates an upward burst
with a rate of 5/(B*71) bursts/sec, leading to same aggregate
bidirectional traffic. For example when B is 1, traffic pattern
is the same with the 5 packets/sec experiment in Section V-C.

We first evaluate the effect of on-demand provisioning
(ODP) by implementing OST without ODP (i.e., periodic
provisioning only, namely PP) and comparing it with OST
(i.e., PP+ODP). Fig. 5(a) plots PDR of PP and OST according
to varying B. We found that PP alone shows quite reliable re-
sult (97.2% PDR) when B=1. However, as the traffic becomes
more bursty, PDR of PP is reduced gradually. We discovered
that >99% of PP’s packet losses are attributed to queue
overflow. As shown in Fig. 5(a), PP’s reliability is restored
when ODP is combined, becoming true OST . Since there is
little energy consumption for channel contention between RPL
neighbors thanks to non-overlapped timeslot scheduling in PP
and OST , their duty-cycles in Fig. 5(b) are determined by
the number of successfully forwarded packets, thus having a
similar pattern with PDR in Fig. 5(a).

Next, we look at whether successful unicast Tx of OST
occurred in PP or ODP. To this end, we plot two different
relative ratios of successfully transmitted packets by PP and
ODP in Fig. 5(c). When B=1, OST mainly uses PP, since
few packets are queued. As B grows up, however, OST ends
up relying on ODP to transmit queued packets. In B=8, the
relative ratio of ODP is 83.3% while that of PP is just 16.7%.

Fig. 5(d) plots an empirical CDF of ODP’s relative ratio
among 72 nodes. Although its average relative ratio in B=1
is rather low (7%) as shown in Fig. 5(c), more than 10% of
nodes have ODP’s ratio of >30%. We identified that all of
those are bottleneck nodes (including the root) each of which
has at least 30 descendant nodes in RPL topology. Even when
B is 1, they often receive a burst of traffic and forward it using
ODP. As B increases, all nodes utilize ODP more by serving
queued packets, recursively whenever possible.

E. Impact of Topology

In Fig. 6, we change the root position to create different
topology. We use three different nodes as the root in the 72-
node testbed; Default indicates the experiment result using the
same root with all the previous experiments. Center/Corner
represent the experiments using alternative nodes at the cen-
ter/corner of the testbed as the root, respectively. We set
aggregate traffic rate from/to the root to 3 packets/sec which
is used in Fig. 3. In this experiment, OST is compared against
RB/SB/AL with slotframe sizes 13 and 29.

RB/SB/AL still show a trade-off between reliability and
energy efficiency in Figs. 6(a) and 6(b); High PDR is achieved
with high duty cycle by using a short slotframe size. However,
OST always maintains >99% PDR with remarkably low duty
cycle regardless of network topology. As the root changes
its location from Center to Corner, average hop distance
increases as depicted in Fig. 6(c). However, OST has shorter
hop distance in RPL network than any other scheme. This
is because OST keeps the RPL network stable, even for



(a) End-to-end ‘upward’ packet delivery ratio (b) End-to-end ‘downward’ packet delivery ratio (c) Radio duty-cycle (on time)
Fig. 7. Various experimental results according to different ratio of bidirectional traffic.

bottleneck nodes, by avoiding timeslot collisions between
RPL neighbors and mitigating collisions between non-RPL
neighbors with time-varying channel offsets. Consequently,
each node freely chooses a neighboring node at the optimal
routing cost (i.e., the shortest hop) as its routing parent.

F. Impact of Bidirectional Traffic Ratio

Throughout the previous evaluation, we have used equal
traffic rates for upward and downward traffic. Now, we use 5
different traffic ratios for upward and downward traffic, (0:10),
(3:7), (5:5), (7:3), and (10:0). Each element denotes aggregate
traffic rate in packets/sec for each direction. For example, (7:3)
represents an experiment with 7 and 3 packets/sec of aggregate
upward and downward traffic, respectively. Even though we
vary the ratio, total traffic in the network remains unchanged.

The results are summarized in Fig. 7. SB shows the lowest
downward PDR in (0:10) since it suffers from queue overflow
due to lack of Tx slots, mainly in the root node which
needs to forward all the downward traffic. As the portion of
upward packets increases, both directional PDRs in RB are
degraded because of channel contention with insufficient Rx
slots. Meanwhile, AL and OST always show perfect bidirec-
tional PDRs thanks to their directional-link based scheduling.
However, OST always has the lowest duty cycle. Interestingly,
OST’s duty cycle remains constant with different traffic ratios,
since it is affected by not traffic pattern (upward-centric
or downward-centric) but total amount of traffic for both
directions based on timeslot assignment with traffic awareness.

VI. RELATED WORK

We summarize representative centralized/decentralized
TSCH scheduling methods, which proves why inflexible au-
tonomous scheduling has been state of the art in this regime.

Centralized TSCH scheduling attempts to construct an opti-
mal schedule with a global view of the network. AMUS [28]
assumes nodes with shorter hop distance from the root have
more traffic to forward, and allocates Tx slots accordingly.
However, since traffic load is also affected by other factors,
it brings out inefficient scheduling. Traffic-aware scheduling
algorithm (TASA) [29] builds a schedule based on traffic load
offered by each node. It allocates timeslots and channel offsets
based on network topology to maximize parallel Tx. However,
Sempere-Paya et al. [30] showed its poor performance on
a real multihop testbed due to its slow schedule adaptation
and significant control overhead. Elsts et al. [31] proposed a
hybrid use of dedicated and shared timeslots. However, their

scheme needs larger number of channels than the network
diameter, which is not applicable to a channel limited network.
Hashimoto et al. [32] proposed a method to add and share
timeslots for retransmissions under the constraints of reliability
and delay. However, it handles neither collision by multiple
contenders nor energy waste due to excessive idle listening.

As a decentralized TSCH scheduling, SF0 [33], defined by
6TiSCH [34], adapts the number of slots according to the
current allocation and demands from the neighbors. SF0 uses
the 6top protocol (6P) [35] to add/delete timeslots but does not
specify which timeslots should be reallocated. As a SF0-based
scheme, low latency scheduling function (LLFS) [36] daisy-
chains the timeslots in a multi-hop path to reduce end-to-end
latency. However, SF0-based approaches require significant 6P
overhead to schedule each link. 6TiSCH also defines TSCH
minimal configuration [37], a simple autonomous scheduling
where all nodes share an identical and fixed slotframe with a
single timeslot for both Tx/Rx. Vallati et al. [38] improves it by
adapting the slotframe size according to the number of packets.
However, it handles a single schedule for all links, suffering
packet collisions and redundant overhearing. In DeTAS [39],
each node aggregates its own bandwidth request with those
from its children, and delivers it to its parent recursively. Then,
it schedules timeslots sequentially from the sink to leaf nodes.
However, if a packet is lost, all the subsequent schedules are
wasted. In some algorithms [40][41][42][43], nodes locally re-
allocates colliding schedules between interfering radio links.
However, negotiation overhead increases substantially with
node density, and they have been evaluated only in small scale.

In contrast, success of OST comes from enabling adaptive
scheduling without sacrificing any desirable characteristic of
autonomous scheduling through a novel two-step scheduling
concept and distributed protocol design.

VII. CONCLUSION

We presented OST , an on-demand TSCH scheduling scheme
with traffic awareness. Contrary to static scheduling, in OST ,
each node dynamically self-adjusts the period of timeslots at
run time according to time-varying traffic intensity. Moreover,
OST provides on-demand allocation to handle packet bursts
in a timely manner without queue overflow. We demonstrated
that OST achieves up to 60% of reliability improvement with
52% of energy saving, compared to the state of the art. With
its open implementation, and as the first adaptive scheduling
verified on a large-scale testbed, OST can serve as a new de
facto timeslot scheduling for TSCH in LLNs.
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