Transmission Power Control in IPv6 Routing Protocol for Low-Power Wireless Network

Hyung-Sin Kim **University of California, Berkeley** hs.kim@berkeley.edu

Jeongyeup Paek **Chung-Ang University** jpaek@cau.ac.kr

Saewoong Bahk **Seoul National University and INMC** sbahk@snu.ac.kr

Introduction – Adaptive Multihop Topology and Tx. Power Control for Not Losing Bandwidth!

Background 0: Low-power and Lossy Network (LLN)

• Network comprised of many resource constrained devices, which usually requires a routing protocol to overcome limited transmission range

Background 1: Multihop Topology Formation in LLNs

- **RPL**: IETF IPv6 Routing Protocol for Low-power Lossy Networks (RFC6550)
- Main goal: Reliable packet delivery over dynamic and lossy links
- Routing metric: Link quality (ETX) and hop distance

Background 2: Transmission Power Setting in LLNs

Problem: How about Bandwidth??

- There has been no bandwidth consideration for RPL and transmission power setting
- We experimentally observed that the current strategy (RPL with uniform transmission power) loses significant bandwidth due to hidden terminal and **load imbalance** problems

Our Proposal: PC-RPL (Power-Controlled RPL)

- Key feature: Adaptive/non-uniform/distributed transmission power control tightly coupled with **load balancing/hidden terminal-aware** multihop topology control
- Improvement: 1) Better aggregate bandwidth, PRR fairness among
- **Highest** transmission power for minimizing hop distance
- Uniform transmission power for all nodes for easy deployment

nodes, and routing stability without increasing hop distance 2) With nonuniform and less-average tx. power usage without manual configuration

Observations and Challenges (Experimental Study)

Testbed Environment

- 48 nodes and 1 root (telosB)
- 3-hop network with highest transmission power (0dBm)
- TinyOS (BLIP + TinyRPL)
- Upstream traffic only, with reasonable traffic load
- No duty-cycling mechanism

RPL with Highest/Uniform Transmission Power

RPL with Uniform Transmission Power Control

Tx. power control has the potential, but causes

severe queue loss at a few nodes when tx. power is too small

Design and Evaluation – "PC-RPL : Power-controlled IPv6 Routing Protocol for LLN"

Design and Approach

- Problem self-detection
 - Link loss **hidden** terminal. Queue loss load imbalance
- PC-RPL structure
 - Reference RSSI value measurement through DIO with max. tx. power \bullet
 - Parent selection by comparing 'reference RSSI' value with 'Children control RSSI threshold' and 'Parent selection RSSI threshold'.
- Distributed problem resolution 1: Hidden terminal mitigation
 - Select a closer parent and reduce transmission power

- **Distributed problem resolution 2: Load balancing**
 - Detach children nodes (farthest located, first detached)

- **Data transmission power control ('just enough' transmission power)** \bullet
 - 1) RSSI margin-based fast adaptation

Evaluation Results (RPL vs. QU-RPL vs. PC-RPL)

Non-uniform transmission power and RSSI thresholds via distributed control, -6.21dBm transmission power on average

