

(x,y)

Audio-based Drone Ranging and Localization using Deep Learning **Gunhoo Park, Jeongyeup Paek Chung-Ang University**

School of Computer Science and Engineering

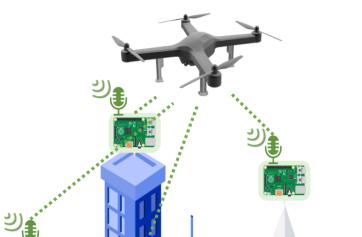
Introduction and Scenario

Introduction

• Accurate distance measurement and localization of drone became critical not only for its mission but also for detecting and identifying malicious usages.

Scenario

• Our system consists of several embedded sensor nodes & a server.



- Although TOA-based acoustic ranging method, acoustic signature based localization, vision-based search, and deep learning based drone detection techniques exist, their usability and scope have yet been limited.
- We propose a *real-time* audio-based system that uses *deep learning* for not only detecting but also *ranging* and *localization* of a drone.
- Each embedded sensor node
 - records audio sound \rightarrow (pre-)processes it
 - \rightarrow sends the data to the server.
- The server
 - receives data from each node
 - \rightarrow computes the final location in *real-time*.

Drone's position:

System Design

Approach

- We collected ~1100 seconds of drone and background sounds in various environments and pre-processed it via Mel-frequency Cepstral Coefficients.
- Deep learning models used: Convolutional Neural Network (CNN) and Deep Neural Network(DNN).
- The key idea is to use the classification probability output of audio-based deep learning for ranging.
- Localization via trilateralization using the ranges from multiple sensor nodes. **System Design**

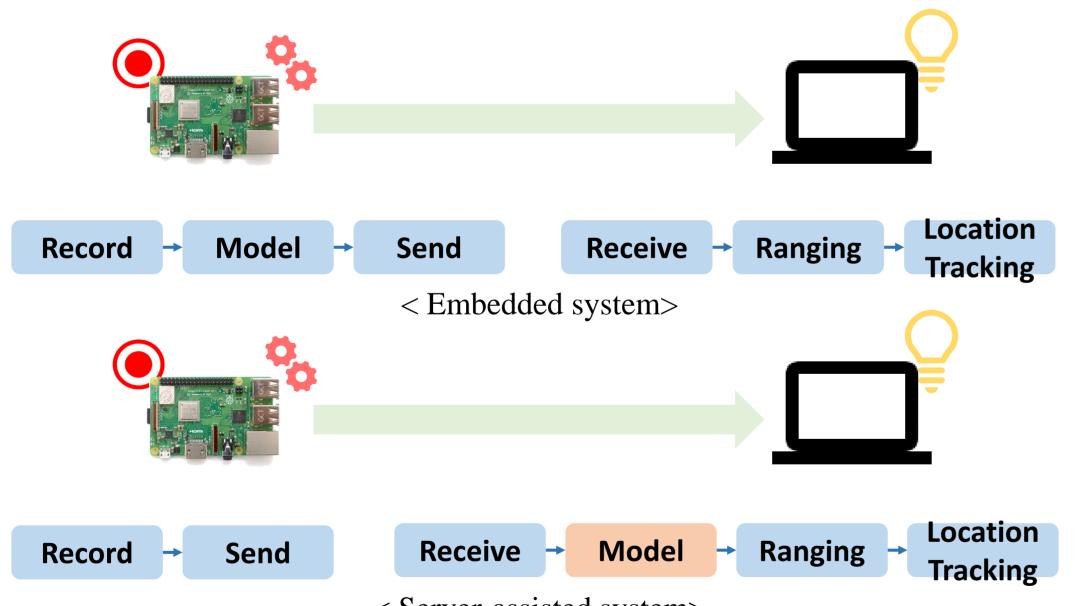
System Comparison

- The total time required to process one second audio was only ~0.86 second for the server-assisted system, whereas embedded approach took ~6.23 second.
- Based on the result, we concluded that the server-assisted approach is suitable for real-time processing whereas the embedded approach is incapable.

Ranging Algorithm

Processing time	Embedded system	Server-assisted system		
Recording	0.9299	0		
Waiting	0	0.3		
I/O	0.0649	0.007		
MFCC	0.6346	0.0792		
Layer	4.3553	0.2084		
Model	0.8884	0.1226		
Prediction	0.2807	0.1398		
Send	0.0005	0		
Total	6.2244	0.857		

- Training results of deep learning model \rightarrow CNN: 90.8% accuracy and DNN: 97.1%
- Based on the results and various aspects of our paper's purpose, we decided to focus on DNN.
- In order to design a system that can process in real-time, we first needed to investigate whether this is feasible through in-depth analysis of latency components of the system.
- For this purpose, we implemented two prototype systems as shown below:



- Idea: Estimate distance based on deep learning classification result.
- Using the detection (classification) probability output of the audio-based deep learning algorithm as an input to a model that can estimate the distance to a drone.
- For this purpose, we have explored two kinds of classification method.
- The first method is binary classification. \rightarrow calculate distance based on the accuracy of the presence or absence.
- The second method is multi-class classification.
 - \rightarrow train data according to the distance of the drone.
 - \rightarrow generate classification probability of each class for the test input.
 - \rightarrow calculate distance based on a weighted average of those classified distance and the classification probability.

	Backgro (no dro				rone 10meters)			
~110		~1100	seconds	~1100	~1100 seconds			
< Binary classification classes>								
Background (no drone)		one Lmeters)	Drone (about 10meters)		Drone (about 20meters)		Drone (about 50meters)	
1100 seconds	~300 s	econds	~300 se	conds	~300 seconds		~300 seconds	

< Server-assisted system>

< Multi-class classification classes>

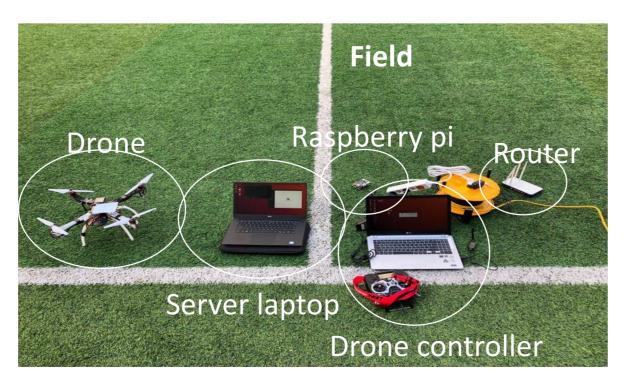
Preliminary Experiment Result

Experiment Environment

• We implemented a prototype of our system using Raspberry Pi 3 with an audio card as sensor node, and used a Linux laptop as the server.

Result

Drone detection accuracy output and calculated distance from DNN-based binary-classification and calculated distance from DNN-based multiclassification.



• Binary classification

- the probability of drone presence is not linearly correlated with the distance.

• Multi-class classification

- estimated distance is well matched within acceptable error range.
- Based on these results, our ranging and localization algorithm will be based on multiclass classification model.

Future work

- Further investigation on multi-class classification and enhancement.
- Devising an accurate model for range estimation based on classification result.
- Implementing a large-scale system that can be used in the real-world.

ε ε ⁴⁰ - - Accuracy 50 ---- Distance 20 Cal 30 20 10 10 50 Actual Distance(m) Multi-classification **Binary-classification**