
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

188 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 2, APRIL 2019

TAiM: TCP Assistant-in-the-Middle for Multihop
Low-power and Lossy Networks in IoT

Mingyu Park and Jeongyeup Paek

Abstract: We investigate the performance of TCP over multihop
many-to-one wireless low-power and lossy networks (LLNs), and
present TCP assistant-in-the-middle (TAiM) to improve TCP fair-
ness among LLN endpoints without sacrificing aggregate through-
put nor end-to-end backward compatibility. TAiM exploits the fact
that RTT over LLN is significantly higher, and more variable, than
wired or WiFi networks due to unique characteristics of LLN.
TAiM intervenes in the middle of TCP communication only at the
LLN border router (LBR), and delicately manipulates the RTT of
the passing flows to achieve its goal, but does not infringe anything
of packet nor operation of existing protocols. TAiM is adaptive and
flexible to network status, and does not require any modifications to
the TCP/IPv6 stack at the endpoints. We implement TAiM solely
in a Linux-based LBR, and perform experiments on two 30-nodes
TelosB testbeds running BLIP/TinyRPL stack in TinyOS. Our ex-
periment results show that TAiM helps TCP to operate fairly and
efficiently while maintaining total throughput and end-to-end com-
patibility.

Index Terms: Fairness, flow control, low-power and lossy wireless
networks (LLNs), multihop, RPL, TCP.

I. INTRODUCTION

LOW-POWER and lossy wireless networks (LLNs) have
been used widely in many areas including smart grid

AMIs [1], [2], smart city management [3], health care [4], build-
ing and industrial automation [5], [6], and environmental mon-
itoring. Armed with Internet standard IP/IPv6-based protocols
such as RPL [7], [8] and 6LoWPAN [9], LLNs have started to
integrate as part of the Internet architecture that aims to support
IP connectivity on millions of devices over wireless mesh net-
works. This approach enables LLN to be more inter-operable,
scalable, flexible and versatile, leading to the realization of In-
ternet of things (IoT).

Taking smart grid as an example, its network requirements in-
clude unprecedented scale and multivendor interoperability over
wireless network, which is well-suited for IP-based LLN [2],
[10]. Cisco’s CG-Mesh system and field area network is a good
example of an IP-based commercial solution for smart grid de-
veloped over LLN by the industry [11]. It is based on IEEE
802.15.4g/e at the PHY and MAC layer to form an LLN, and

Manuscript received November 18, 2018. This paper is specially handled by
EICs with the help of three anonymous reviewers in a fast manner.

This research was supported by the Chung-Ang University Graduate Research
Scholarship in 2017, and also by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2017R1D1A1B03031348).

M. Park and J. Paek are with the Chung-Ang University, School of Com-
puter Science and Engineering, Seoul, Republic of Korea, email: {hello0922,
jpaek}@cau.ac.kr.

J. Paek is the corresponding author.
Digital Object Identifier: 10.1109/JCN.2019.000017

Internet

LBR
(LLN border router)

Low-power and lossy network

Standard
TCP server

Standard-compliant
embedded TCP clients

Fig. 1. Illustration of the target IoT LLN scenario.

allows up to 5000 endpoints to connect to a single LLN border
router (LBR). Above the link layer, it uses 6LoWPAN, RPL,
and IPv6 to provide inter-networking support for smart meter-
ing endpoints. This provides an evidence that the use of IPv6
over RPL/6LoWPAN in an IEEE 802.15.4 network is feasible
in large scale LLNs. It is also part of the growing industry effort
that invests in LLN solutions to facilitate IoT. We believe that
this trend is promising and will continue for the foreseeable fu-
ture. That is, we believe that industrial LLN solutions will adopt
well-tested standard Internet protocols for scalability, compati-
bility, security, and development cost reasons [10], [12].

Over the past few years, there have been a number of perfor-
mance evaluation studies of LLN combining IP based protocols
(Section V). However in most of those studies, UDP was used
as the transport protocol. This is because, considering the fact
that LLNs typically have low throughput, high packet loss, and
frequent topology changes among other characteristics that pose
integration challenges, it was believed that TCP is inappropriate
for resource-constrained embedded devices in LLN. This is the
main reason why TCP has not been tightly associated with LLN
(for example, 6LoWPAN defines header compression for UDP,
but not for TCP) even though it is the dominant transport proto-
col in today’s Internet.

However, effective support of TCP is essential for achieving
interoperability of the IP stack in LLNs. Since many legacy
and already-installed devices currently use TCP, LLN is also
required to support TCP maybe not for performance improve-
ment, but for compatibility and cost reduction. For example,
smart grid applications support encapsulation of their protocols
in TCP/IP (but not UDP), and some protocols even define a dedi-
cated mode of operation over the TCP/IP (e.g., IEC 60870-5-104
variation of the IEC 60870-5-101 SCADA protocol) [13]–[15].

1229-2370/19/$10.00 c© 2019 KICS

PARK et al.: TAIM: TCP ASSISTANT-IN-THE-MIDDLE FOR MULTIHOP ... 189

Thus, TCP is likely to continue to play a significant role in LLNs
as a part of IoT.

Unfortunately, it is true and well-known that TCP’s conges-
tion control mechanism performs poorly in lossy wireless envi-
ronments and generates high overhead, especially over wireless
multihop tree topology. In particular, consider the target IoT
LLN scenario illustrated in Fig. 1. There are ‘N ’ LLN endpoints
(e.g., smart electrical meters in AMI system) that form a mesh
network rooted at an LBR, and the LBR connects the LLN to
the Internet (WAN) at which a server resides. LLN endpoints
communicate with each other through IEEE 802.15.4 links, and
use RPL to construct IPv6 routes towards the LBR. On top of
RPL/IPv6, each node uses TCP connection to the server for data
collection. In this scenario, every TCP flow must pass through
an LBR which becomes the bottleneck of communication. Dur-
ing this process, packet loss due to collisions, RTT variance
due to multihop topology (e.g., different network depth, varying
buffering delays for forwarding packets from varying subtree
sizes) and link-layer retransmissions, in addition to how TCP’s
congestion control mechanism reacts to those are the reasons
why TCP suffers unfairness problem and operates inefficiently
in multihop LLN (as we will show in Section II).

In this paper, we propose ‘TCP assistant-in-the-middle’
(TAiM) for multihop LLNs to improve TCP fairness among
LLN endpoints without sacrificing total aggregate throughput
nor end-to-end backward compatibility. TAiM exploits the fact
that RTT over multihop LLN is significantly higher and more
variable than wired or WiFi networks, especially due to lower
bandwidth, higher loss rate, and multihop topology. Based on
this intuition, TAiM delicately manipulates the RTT of the pass-
ing flows to achieve its goal. TAiM intervenes in the middle
of TCP communication only at the LBR but does not infringe
anything of packet nor operation of existing protocols. TAiM is
adaptive and flexible to network status, and does not require any
modifications to (in fact, oblivious to) the TCP/IP stack at the
endpoints.

The contributions of this paper are as follows;

• We propose TAiM, a TCP assistant scheme that can address
the TCP unfairness problem among LLN endpoints when
communicating with an endpoint outside the LLN (e.g., In-
ternet) without modifying anything at the endpoints nor vio-
lating the end-to-end backward compatibility.

• We implement TAiM in, and only in, a Linux-based LBR,
and evaluate it on two 30-node indoor LLN testbeds. Each
node is a TelosB [16] mote, and use BLIP and TinyRPL in
TinyOS [17] as the TCP/IP and RPL implementation.

• Experiment results show that TAiM reduces the throughput
difference between the fastest and the slowest node by up
to 50% while maintaining the network-wide total aggregate
throughput.

The remainder of this paper is organized as follows: In Sec-
tion II, we define the problem and motivate our work. Section III
presents the design of TAiM, and elaborate on its main func-
tional blocks. We then evaluate TAiM in Section IV, and discuss
the related work in Section V. Finally, we will summarize our
work in Section VI.

OTHERLABS

3m

1m

2

4 6

1

5

3

3m

D
ESK

2m

7 8 9

DOOR

R
A
S
P
I3

10 11 12 13 1514 16 17 18 19 20

21

WALL

PC ROOM

22 2423 25 26 27 28 29 30

STAIRS STAIRS

LBR

28.5m

8m

Fig. 2. ‘Testbed-1’: 30-node LLN testbed that expands from an office room to
the corridor. Transmit power set to -12 dBm.

28 bytes 40 bytes 20 bytes 38 bytes
TinyOS message

header IPv6 header TCP
header Payload

Fig. 3. Structure of a TCP/IPv6 packet in TinyOS/BLIP.

II. PROBLEM – PRELIMINARY STUDY

In this section, we conduct a preliminary testbed experiments
to confirm the unfairness problem of TCP in multi-hop LLN,
and discuss the main causes of the problem to motivate our
work.

A. Scenario and Experiment Setup

We have designed our testbeds and experiments to mimic the
target IoT LLN scenario illustrated in Fig. 1. At a high-level,
LLN endpoints communicate with each other through IEEE
802.15.4 links, and use RPL to construct IPv6 routes towards
the LBR. Once a node founds a path to the LBR through RPL,
it opens a TCP connection to the server in WAN. For our ex-
periment purposes, the server will issue a ‘start data collection’
command to all nodes when all N nodes are connected to the
server. Then the clients will transmit TCP data segments to the
server as fast as possible. A client disconnects the communi-
cation once it finishes transferring 500 application-layer data
segments1, which corresponds to 19000 application-layer data
bytes. In this scenario, LBR simply routes and forwards received
packets between LLN and WAN without any modification to the
packets.

Experiment Setup. We configured two LLN testbeds, each
with 30 LLN endpoints and one LBR. The first testbed (named
‘testbed-1’ hereafter) expands from an office room to the corri-
dor as depicted in Fig. 2, and the second testbed will be shown
in Section IV. Each circled number represent an LLN endpoint,
and radio transmit power is set to -15 dBm. Each LLN node
is a TelosB [16] clone device with an msP430 microcontroller
and a CC2420 radio chip, and communicates with each other
over IEEE802.15.4 links. We use BLIP and TinyRPL in TinyOS
2.1.2 as the embedded TCP/IP stack and RPL routing protocol

1Note that the actual number of TCP packets may differ due to msS, sliding
window, congestion window, etc.

190 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 2, APRIL 2019

MAX : 40.50 MIN : 11.30

Average : 28.09

0

5

10

15

20

25

30

35

40

45

Th
ro

ug
hp

ut
 (b

ps
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Client number

Fig. 4. TCP throughput result from a preliminary experiment on ‘testbed-1’, a
30 nodes multihop LLN deployed in the corridor. Unfairness can be seen.

LBR

1

10

21 2

11

14

3

12 13

15 16 17

20

1819 4

7

22

5

23

6

24 2526 27 2829 30

8 9

Fig. 5. A snapshot of the routing tree topology constructed by RPL during the
preliminary experiment on ‘testbed-1’.

implementation, respectively, mostly with their default config-
urations after correcting a few software bugs in their code with
reference to the previous work by Kim et al. [18]. On top of that,
we installed TCP client application in TinyOS to all LLN end-
points for the experiments. We use Linux Ubuntu 16.04.3 for
the LBR, and Raspberry-Pi3 device for the TCP server which is
small single-board computers with Linux based Raspbian OS.

One parameter of the experiment is worth noting. The max-
imum packet size a TelosB (or many IEEE 802.15.4-based de-
vices) can transmit is 127 bytes, and the total header size includ-
ing TCP/IP adds up to 88 bytes as shown in Fig. 3, leaving only
39 bytes for TCP payload. To minimize the already-significant
header overhead, it is better to set the MSS to the maximum
possible size. For this reason, embedded TCP implementations
(e.g., uIP [19] in ContikiOS or BLIP in TinyOS) often ends up
having single outstanding packet without having sliding window
behavior.

B. Preliminary Experiment Results

Fig. 4 plots the per-node average TCP throughput on ‘testbed-
1’ where the solid horizontal line represent the average of all
nodes. Note that we have not introduced TAiM to this exper-
iment yet. As it can be seen, the achieved data throughput of
each node is very different even though they are intended to be
identical devices within an LLN from the applications perspec-
tive. The throughput of the fastest node is about 3.6 times the
slowest one. This result exemplifies that there is an unfairness
problem in multi-hop LLN.

One interesting observation is that the throughput of several
children nodes are significantly higher than their parent nodes.
To understand this, consider a parent node which has several
children; e.g., node 21 in Fig. 5 which depicts a snapshot of the
routing tree topology during this experiment. Note that all TCP
clients are attempting to transmit as fast as possible. In this case,
there are a lot of packets in the air around the parent node since

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G
o

o
d

p
u

t
(P

ac
ke

ts
 /

 s)

Rate demand (Packet / s)

Fig. 6. Average goodput results achieved by UDP on the ‘testbed-1’.

the parent node needs to receive packet from its children while
forwarding and transmitting all of those packets in addition to its
own packets to its parent (i.e., parent’s parent). Thus, contention
will be intensive around a node with large number of children,
relatively more significant than that of the children, and accord-
ingly it is more exposed to link losses compared to its children.

Moreover, a node which loses a packet will notice the loss
after TCP retransmission timeout, and thus will not send any-
thing until retransmission timer is fired. In this case, the number
of packets in the air will decrease sharply, and thus other nodes
can communicate with the server better than before. As a result,
the gap between a node exposed to link losses and a node which
does not becomes significant. Because the parents are more ex-
posed to link losses than their children in a many-to-one topol-
ogy, this phenomenon may happen more frequently on the par-
ent nodes. Similarly, throughputs of the clients in the room are
much better than those in the corridor because the number of
clients in the room is less than the corridor, thus the contention
in the room is also less than the corridor, resulting in better use
of the medium.

To show how congestion affect link losses, we conducted
additional experiment using UDP instead of TCP with various
offered traffic load. Fig. 6 shows the result from the UDP exper-
iment. X-axis represents the number of packet sent every sec-
ond, and y-axis represents the number of packets successfully
received at the LBR. The dash x = y line is the reference line
to compare the delivery ratio. Each boxplot shows the distribu-
tion of each node’s goodput. As the figure shows, all nodes can
communicate well almost without losses when endpoints trans-
mit packet slowly until 0.4 packets / s. However starting from
0.5 packets / s and up, some nodes suffer losses and the loss rates
increase dramatically as the offered load increases. In particular,
we can observe a node with significantly low goodput at offered
load of 0.5 packets / s and above. The worst node is node 21
which is also the slowest node in the preliminary experiments in
Fig. 4. This result explains that a node which has a lot of chil-
dren is also exposed and sensitive to congestion losses.

Bottom line is that TCP endpoints within multi-hop LLN
experiences severe throughput unfairness problem due to link
losses from bursty congestion, and this motivates us to design
our proposed new scheme, TAiM.

III. TAiM DESIGN

In this section, we propose TAiM to address the unfairness
problem in multi-hop LLNs.

PARK et al.: TAIM: TCP ASSISTANT-IN-THE-MIDDLE FOR MULTIHOP ... 191

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(a) (b)

Fig. 7. An example scenario where the number of packets sent by an LLN end-
point within each (small) time window vary significantly. x-axis is concep-
tual time windows, and y-axis is the number of packets: (a) Burst scenario
and (b) distributed scenario.

𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6 𝑁7 𝑁8 𝑁9 𝑁10 𝑁11 𝑁12

𝑁𝑖 : TCP client nodes

Dequeue

𝑁1

Enqueue

Fig. 8. An example scenario of priority queuing where a second packet from
N1 is forwarded before the first packet from N12.

TAiM resides and operates only at the LBR, and uses RTT ad-
justment, burst distribution, and packet re-ordering techniques
to enhance throughput fairness between each LLN endpoint
(TCP client) without total aggregate throughput loss. While do-
ing this, TAiM intervenes in the middle of TCP communication,
but does not violate or disrupt end-to-end compatibility because
TAiM does not infringe on any packet or existing operation of
TCP/IP protocols. TAiM simply measures throughput of each
client via packet sniffing, and controls traffic flow by adjusting
the timing of forwarding.
TAiM is based on the intuition that RTT over multihop LLN

is significantly higher and more variable than wired or WiFi net-
works, especially due to lower bandwidth, higher loss rate, and
multihop topology. Key idea is to buffer packets to control RTT
of each node, and allow all endpoints within the LLN to experi-
ence similar RTT at the TCP layer, both among nodes and across
traffic load variations. This can mitigate the effect of highly
variable RTT, and also disperse traffic bursts to achieve stable
and continuous traffic flows. While doing this, TAiM does not
drop any packet, unlike the well-known random early detectino
(RED) technique. TAiM is adaptive and flexible to network sta-
tus, and does not require any modifications to (in fact, oblivious
to) the TCP/IP stack at the endpoints.

A. Burst Distribution

The first technique in TAiM is burst distribution. Even if all
clients transmit data packets periodically at a regular rate, the
actual number of packets in transit in the LLN within a small
time window can be irregular. For example, consider Fig. 7(a).
Imagine that the solid horizontal line represent the throughput
threshold which a link can endure. The x-axis is conceptual time
windows, and y-axis is the number of packets per each time win-
dow. In this case, collision probability will increase dramatically
when the number of packets is larger than threshold. To avoid
this situation, we try to distribute these packets evenly along the
time domain. With this motif, we let TAiM, which resides and
operates at the LBR, buffer packets and intentionally add time
delay between the forwarding of consecutive packets when it
receives packets from either side of the TCP connection.

Algorithm 1 Delay time decision algorithm.
1: while until the end of experiment, at 1 minute interval do
2: if throughputmax > 2× throughputmin then
3: delaytime← delaytime× (1 + α)

4: ERTO ← MEAN(ERTO)

5: if delaytime > ERTO/num_clients_in_q then
6: delaytime← ERTO/num_clients_in_q
7: end if
8: else if throughputmax < 2× throughputmin then
9: delaytime← delaytime× (1− β)
10: end if
11: for all clients do
12: throughputi ← EWMA(throughputi)
13: end for
14: num_clients_in_q ← EWMA(num_clients_in_q)
15: end while

Said differently, TAiM puts received packets into its priority
queue and forwards the packets to the server (or clients) after a
little delay between packets to reduce bursts of packets in the air.
Note that buffering is possible at the LBR since, unlike resource-
constrained LLN endpoints, LBR is a more resource-rich Linux
device. One may think that adding a little delay to packets may
slow-down the whole system. It does not. In fact, by doing
this, the number of packets in the air will be distributed evenly
as shown in Fig. 7(b). As a result, the collision probability will
decrease, thus reducing the average RTT and improving overall
throughput of those nodes that used to experience packet colli-
sions.

B. Packet Re-ordering

The second technique in TAiM is packet re-ordering. Since
TAiM can buffer received TCP packets, it can also decide the
priority order in which to forward those buffered packets. To
this end, TAiM estimates each node’s accumulative throughput
per time window, and uses that for prioritizing each node. When
TAiM intentionally delays packets before every forwarding, a
node which has the lower throughput can have shorter delay,
and the nodes with higher throughput can have longer delay.

As a simple example, suppose that there are 30 nodes, the
round trip time (RTT) of every node is 500 ms, and the inter-
packet interval is always 50 ms for simplicity of illustration.
Also assume that the estimated throughput of every node is dis-
tinct. If the LBR receives packets from at least 12 nodes almost
simultaneously, the packet from the lowest throughput node will
be sent first, and the packet having the 11th priority will be sent
after 500 ms. Because the RTT is 500 ms, at the same time
that the 11th packet is transmitted, the next packet of the low-
est throughput node will arrive and the packet will be enqueued.
At this time, 12th packet is not transmitted yet, and the lowest
throughput node’s packet has a higher priority than 12th packet,
thus the lowest node can send a packet one more time compared
to 12th nodes. Fig. 8 illustrates this operation concisely. This
packet re-ordering is implemented using per-flow queues at the
LBR, and is a key component of TAiM that achieves flow control
for throughput fairness without dropping (e.g., RED) or tagging
(e.g., ECN) packets.

C. Delay Time Decision for RTT Adjustment

The remaining key challenge is how TAiM can decide the ap-

192 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 2, APRIL 2019

propriate delay time. In order to give sufficient time for dispers-
ing packet bursts with a goal of collision-free packet transmis-
sion, TAiM selects a default delay time of Dinit at start when
there are no TCP flows passing through the LBR. The purpose
of Dinit is to avoid burst transmissions by providing minimum
spacing between packets, and it is selected by observing bursty
behavior at the USB/Serial link of LBR interface2. Then, once
TCP flows start to pass through the LBR, TAiM will recalculate
every minute to find an appropriate delay time for each flow and
adapt to the network status.

For this purpose, TAiM estimates the throughput of each
node every minute by peeking the TCP sequence number in
the received packets, smoothes the estimation using exponen-
tially weighted moving average (EWMA) filter, and calculates
the maximum and minimum of throughputs for all TCP flows.
TAiM also estimates the number of concurrent TCP flows pass-
ing through the LBR at any given time using EWMA as well.
Using these values, TAiM determines the delay time according
to the following ‘Delay Time Decision Algorithm’ shown in Al-
gorithm 1. The basic idea of the algorithm is that, if sufficient
fairness is achieved in the current time window, TAiM tries to
forward packets faster. In the opposite case, if unfairness is de-
tected, TAiM forwards slower. It should be noted that the decre-
ment (β, 5% in our implementation) of delay time is bigger than
the increments (α, 2% in our implementation). This is to ag-
gressively seek for better throughput when fairness is achieved
because, even though fairness is one of our goal, we do not want
to sacrifice throughput while achieving fairness.

In addition, TAiM checks whether the delay time is larger
than average expected RTO (ERTO). This is because, if the de-
lay time is too long, a TCP client that has timed out by RTO will
retransmit a duplicate packet although the packet has already ar-
rived at the LBR successfully. These duplicate retransmission
packets in the path of communication will cause unnecessary
energy consumption and increase congestion. Since TAiM can
sniff all packets, it can estimate the RTT for each flow. That
means TAiM can also calculate ERTO of each node. To this
end, we can use this value as an upper limit of the delay time.
Specifically, TAiM never sets the delay time to be bigger than
a value which is the average ERTO divided by the number of
clients. Through this decision process, TAiM is adaptive to net-
work condition.

D. TAiM Process All Together

To put everything together, Fig. 9 shows the overall func-
tional diagram and components of TAiM. When TAiM within
an LBR receives a packet, it checks whether it is a TCP segment
passing between LLN and WAN through the ‘packet checker’.
If not, TAiM will ignore and forward the received packet di-
rectly since our scheme aims at assisting TCP flows in multi-
hop LLN. If the packet is a TCP segment flowing between LLN
and WAN, it is passed to the ‘throughput/RTT estimator’ com-
ponent which estimates throughput, RTT, and ERTO for each
TCP flow. Then, the estimated throughput is used for assign-
ing priority to the received packets, and the RTT is used for
setting an upper limit of delay time. After the estimation and

2This Dinit may sound insignificant or unnecessary theoretically, but is criti-
cal in real implementations due to bursty behaviour of USB/serial links.

THROUGHPUT / RTT
ESTIMATOR

PACKET CHECKER

WAN
INTERFACE

PRIORITY QUEUE

𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

𝑁6

SCHEDULER

DELAY TIMER

RECEIVE
PACKET

Not a TCP packet

LBR
(LLN border router)

Fig. 9. TAiM’s main functional components.

configuration of the delay time, the estimator inserts the packet
into per-flow priority queue. Additionally, a scheduler takes one
packet per each delay time and forwards the packet to its destina-
tion through an appropriate interface. Finally, one limitation of
TAiM is that all of above estimations assume a relatively static
network such as smart grid AMI network, and the estimations
may be inaccurate for mobile devices that move between differ-
ent LLNs/LBRs [20]. We hope to address the mobile devices in
our future work.

IV. EVALUATION

To evaluate the effectiveness of TAiM and show how TCP
performance is improved compared to the result in Fig. 4,
we conduct TCP experiments with TAiM using the scenario
and ‘testbed-1’ setup (Fig. 2) described in Section II.A. All
node/routing configurations and parameters are identical to the
preliminary experiment since TAiM operates at and only at the
LBR without any modification to the endpoints.

Fig. 10 plots the per-node throughput from the experiment
when we apply TAiM. We can visually observe at a glance that
the overall throughput fairness is much better than the case with-
out TAiM in the Fig. 4. Specifically, the nodes that used to suffer
high contention and exhibited relatively lower throughput have
improved their throughput significantly compared to the exper-
iment without TAiM. The main reason for this improvement is
because TAiM reduces congestion by distributing packet bursts
over time. Moreover, the total aggregate throughput is not re-
duced compared to the case without TAiM although TAiM in-
tentionally delays most packet transmissions. This means that
the added delay offset did not negatively impact the throughput
nor the average RTT of the TCP clients, which in turn implies
that the throughput achieved by TCP in LLN without TAiM is
far less than what can be inferred from the RTT due to the lossy
and multihop characteristics of wireless LLN.

To compare the fairness of both results quantitatively, we use
Jain’s fairness index [21] as well as the difference between the
max and min throughput nodes. First of all, Jain’s fairness index
has improved from 0.947 without TAiM to 0.994 with TAiM.
The increment may look small numerically, but the improve-
ment is clear and consistent over multiple experiments.

PARK et al.: TAIM: TCP ASSISTANT-IN-THE-MIDDLE FOR MULTIHOP ... 193

MIN : 18.98 MAX : 31.85

Average : 28.88

0

5

10

15

20

25

30

35

40

45

Th
ro

ug
hp

ut
 (b

 p
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Client number

Fig. 10. TCP data throughput for each node with TAiM on the ‘testbed-1’.
Fairness has improved compared to Fig. 4.

0.6

0.7

0.8

0.9

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Fa
ir

n
e

ss
 in

d
e

x

Time

W/O TAiM With TAiM

(a)

0

2

4

6

8

10

12

14

16

18

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

(M
ax

 -
M

in
)

/
M

in

Time

W/O TAiM With TAiM

(b)

Fig. 11. Fairness of per-node throughput during the progress of the experiment
per-minute, with and without TAiM on the ‘testbed-1’: (a) Jain’s fairness
index and (b) max-min difference ratio.

However, since Jain’s fairness index indicates fairness be-
tween all clients, it may not well represent unfairness between
significantly faster and slower nodes when there are also many
nodes closer to the average. So we use a second indicator,
‘max-min ratio’, which is defined as the throughput difference
between the nodes with maximum throughput and minimum
throughput, divided by the minimum throughput. Using this
metric, basic TCP’s max-min ratio is 3.6 which means that the
fastest node’s throughput is about 3.6 times the slowest node’s
throughput. On the other hand, when we use TAiM, max-min
ratio is only 1.7. In addition, the differences between through-
puts in the room and those in the corridor are approximately
twice without TAiM, except for one slowest node which has
large number of children. However when we use TAiM, the
differences becomes 1.1x only. Thus the fairness has improved
by over 50% when we use TAiM.

Above results represent only the final value averaged over the
whole duration of the experiment (which was roughly 1.5∼2

1m

50cm

1

2

3

5

4

6

7

8

10

9

11

12

13

15

14

16

17

18

20

19

21

22

23

25

24

26

27

28

30

29

LBR

D
O
O
R

RASPI3

5m

DESK

2m

8m

1m

Fig. 12. ‘Testbed-2’: 30-node LLN testbed in an office room. Transmit power
is set to -25 dBm.

LBR

1

2

3 4 5

6 7 8

9

1011 12 1314 15 16 17

1819

25 2021

22

28

23

24

26 27 29

30

Fig. 13. A snapshot of the routing tree topology constructed by RPL during
TCP experiment on the ‘testbed-2’.

hours). To take a deeper look into the details, we analyze the
per-node throughput over time at 1 minute intervals based on
the time-scale that TAiM recalculates the delay time. Fig. 11(a)
and Fig. 11(b) present the per-minute Jain’s fairness index and
max-min throughput ratio during the experiment, with and with-
out TAiM, over time. Dotted line with circles present the case
without TAiM, and the solid line with squares is for the case
with TAiM. At the beginning of the experiment, fairness may
be similar for both cases with and without TAiM. However, as
time progresses, TAiM clearly achieves better throughput fair-
ness (higher fairness index, lower max-min ratio) throughout the
entire experiment after around 10 minutes from the beginning
of the experiment. Furthermore, note that TAiM finishes later
than without TAiM. This is because we plot the fairness index
only when all 30 connections are active, and TAiM is fairer than
the case without TAiM. That is, the fastest node finishes earlier
without TAiM since its throughput (the fastest among all nodes)
is higher than the case with TAiM. Said differently, TAiMmakes
the fastest node slower to let the slowest node become faster.

‘Testbed-2’ Experiment. To ascertain that TAiM is adaptive
to other topologies as well, we conduct another experiment in
an office room where the nodes are deployed in a regular lattice
form as shown in Fig. 12 (named ‘testbed-2’ hereafter). Since
the physical size of the experimental environment is smaller,
we decrease transmit power to -25 dBm for creating a multihop
topology within the room. Other parameters are exactly equal to
the parameters of the experiment conducted on testbed-1. The
results of the experiments with and without TAiM are plotted in
Figs. 14(b) and 14(a), respectively. Fig. 13 depicts a snapshot
of the routing tree topology. As expected, node 5 and 9 are the
slowest nodes due to having a large number of children nodes.
In the results, the aggregate throughput decreases slightly by
about 2.65% compared to the experiment without TAiM. How-
ever Jain’s fairness index has improved from 0.989 to 0.997.
In addition, the difference between maximum throughput and
minimum decreases from 1.7 times to 1.3 times by 20.98%.
Figs. 15(a) and 15(b) plots the changes of fairness index and

194 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 2, APRIL 2019

MIN : 19.70 MAX : 33.22

Average : 28.26

0

5

10

15

20

25

30

35

40

45
Th

ro
u

gh
p

u
t

(b
p

s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Client number

(a)

MIN : 22.86

MAX : 30.46 Average : 27.51

0

5

10

15

20

25

30

35

40

45

Th
ro

u
gh

p
u

t
(b

p
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Client number

(b)

Fig. 14. TCP data throughput for each node on ‘testbed-2’ with and without TAiM: (a) Without TAiM and (b) with TAiM.

0.80

0.85

0.90

0.95

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Fa
ir

n
e

ss
 in

d
e

x

Time

W/O TAiM With TAiM

(a)

0

1

2

3

4

5

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

(M
ax

 -
M

in
)

/
M

in

Time

W/O TAiM With TAiM

(b)

Fig. 15. Fairness of per-node throughput during the progress of the experiment per-minute, with and without TAiM on the ‘testbed-2’: (a) Jain’s fairness index and
(b) max-min difference ratio.

max-min ratio of per-node throughput over time at 1 minute in-
tervals. Overall, both the fairness index and max-min fairness
improved. This improvement may look small, but this is because
the overall fairness was pretty good even without TAiM due to
the regular lattice pattern deployment of the nodes in testbed-2.
In other words, this is the worst case for TAiM where there was
no room for improvement to begin with. These results show that
TAiM is adaptive to other topologies as well.

To summarize, the results all together show that TAiM im-
proves throughput fairness by reducing the throughput differ-
ence between the fastest node and the slowest node without sac-
rificing total aggregate throughput. All we manipulate is the
timing of forwarding (and possibly RTT) to mitigate the colli-
sion and contention due to bursty transmissions, and we do it
minimally and delicately to maintain total aggregate throughput
and avoid firing of RTO. Added delay offset does not increase
the average RTT of nodes since added delay to the fastest node
provides opportunities for other slower nodes. TAiM is based on
the intuition that RTT over multihop LLN is significantly higher
and more variable than wired or WiFi networks, especially due
to lower bandwidth, higher loss rate, and multihop topology.
End-to-end backward compatibility comes for free since we do
not modify anything in the packets nor protocol behavior.

V. RELATED WORK - TCP IN MULTIHOP LLN

There are vast amount of work on TCP fairness over the past
20∼30 years in the Internet or WiFi context (e.g., RED [22]),
which is too many to list here. However, there are not many in
the LLN context. In this section, we limit our scope to related
work on TCP/IPv6 over multihop LLN.

Several prior work have investigated the performance of
IPv6/RPL on IEEE 802.15.4 based LLN. Ko et al. evaluated the
performance of RPL and 6LoWPAN using TinyRPL and BLIP
implementations in TinyOS [23], and shown that performance is
similar to the de facto data collection protocol, CTP in TinyOS,
while having the benefits of an IPv6-based architecture. They
also compared it against the performance of ContikiRPL over
uIPv6 in ContikiOS [24], and showed that the two embedded IP
stack implementations are interoperable but parameter selection
and implementation details have significant effect on the per-
formance. However, both of these work neglected TCP in their
evaluations.

Duquennoy et al. presented TCP experiment results on LLN
using the burst forwarding scheme that they proposed to en-
hance data throughput [25]. However, their LLN setup was a
single PC-LLN-PC line topology testing a single stream of data.
In contrast, our work uses embedded TCP on one side of the
connection, uses multihop tree topology with multiple children
nodes per parent, and tests 30 streams of data simultaneously in
a many-to-one LLN scenario.

Kim et al. [18] presented a measurement study of TCP over
RPL in an IPv6 and IEEE 802.15.4-based LLN. Similar to our
preliminary findings, they have also identified that TCP has un-
fairness problem in multihop LLN. Zheng et al. [26] have also
shown that TCP operates poorly in LLN. By measuring retrans-
mission times, transfer duration and energy consumption, they
show that TCP is very sensitive to congestion in LLN. How-
ever, unlike our work, neither of these work have proposed any
mechanism to resolve those problems. In contrast, we propose a
mechanism to address the unfairness problem of TCP over mul-

PARK et al.: TAIM: TCP ASSISTANT-IN-THE-MIDDLE FOR MULTIHOP ... 195

tihop wireless LLN without requiring modifications to (in fact,
oblivious to) the TCP/IP stack at the endpoints nor sacrificing
end-to-end backward compatibility.

One of the most notable work in the WiFi context is Snoop
by Balakrishnan et al. [27] which proposed a simple and effec-
tive mechanism to improve TCP throughput over wireless links.
Similar to TAiM, Snoop operates on the basestation without any
end-to-end modifications. However, Snoop is experimented with
AT&T Wavelan which has much higher bandwidth and opera-
tions in a 1-hop star topology. In addition, their goal was to
improve throughput and did not mention fairness. In contrast,
TAiM focuses on low-bandwidth high-RTT multihop LLN with
a goal of achieving fairness among several endpoints despite
variable RTT and congestion levels. Finally, compared to the
well-known RED [22] idea, our work differs in that we do not
drop packets within the network.

VI. CONCLUSION

In this paper, we proposed TAiM, ‘TCP Assistant-in-the-
Middle’. It uses ‘burst distribution’ and ‘packet re-ordering’
techniques to address the unfairness problem of TCP over mul-
tihop wireless LLNs. Key idea is to balance the RTT that each
LLN endpoint experiences by adjusting the timing of forward-
ing at the LBR based on the achieved throughput. TAiM is
adaptive and flexible to network status, and does not require
any modifications to (in fact, oblivious to) the TCP/IP stack at
the endpoints. We implemented TAiM solely in a Linux-based
LBR, and performed real experiments on two 30-nodes TelosB
testbeds running BLIP/TinyRPL stack in TinyOS. Our results
show that TAiM reduces the throughput difference between the
fastest node and the lowest node by up to 50% without sacrific-
ing total throughput nor end-to-end backward compatibility.

REFERENCES
[1] E. Ancillotti, R. Bruno, and M. Conti, “The role of the rpl routing protocol

for smart grid communications,” IEEE. Commun. Mag., vol. 51, pp. 75–
83, Jan. 2013.

[2] D. Popa, M. Gillmore, L. Toutain, J. Hui, R. Ruben, and K. Monden, “Ap-
plicability statement for the routing protocol for low power and lossy net-
works (RPL) in AMI networks,” draft-ietf-roll-applicability-ami-10, Jan.
2015.

[3] T. Heo et al., “Escaping from ancient rome! Applications and chal-
lenges for designing smart cities,” Trans. Emerging Telecommun. Technol.,
vol. 25, no. 1, pp. 109–119, 2014.

[4] J. Park et al., “Glasses for the third eye: Improving clinical data analysis
with motion sensor-based filtering,” in Proc. ACM SenSys, Nov. 2017.

[5] A. Brandt, J. Buron, and G. Porcu, “Home automation routing require-
ments in low-power and lossy networks,” RFC 5826, Apr. 2010.

[6] E. J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building automa-
tion routing requirements in low-power and lossy networks,” RFC 5867,
June 2010.

[7] T. Winter et al., “RPL: IPv6 routing protocol for low-power and lossy
networks,” RFC 6550, Mar. 2012.

[8] H.-S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6 rout-
ing protocol for low-power and lossy networks (RPL): A Survey,” IEEE
Commun. Surveys Tuts., vol. 19, pp. 2502–2525, Sept. 2017.

[9] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sept. 2007.

[10] J. Wang and V. Leung, “A survey of technical requirements and consumer
application standards for IP-based smart grid AMI network,” in Proc.
ICOIN, 2011.

[11] Cisco, “Connected grid networks for smart grid - Field area network.”
http://www.cisco.com/web/strategy/energy/field_area_network.html.

[12] Z. Fan et al., “Smart grid communications: Overview of research chal-
lenges, solutions, and standardization activities,” IEEE Commun. Surveys
Tuts., vol. 15, no. 1, pp. 21–38, 2013.

[13] T. Sauter and M. Lobashov, “End-to-end communication architecture for
smart grids,” IEEE Trans. Ind. Electron., vol. 58, pp. 1218–1228, Apr.
2011.

[14] V. Altmann, J. Skodzik, F. Golatowski, and D. Timmermann, “Investiga-
tion of the use of embedded web services in smart metering applications,”
in Proc. IEEE IECON, Oct. 2012.

[15] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web ser-
vices: Design and implementation of interoperable and evolvable sensor
networks,” in Proc. ACM SenSys, 2008.

[16] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in Proc. IPSN/SPOTS, Apr. 2005.

[17] J. Hill et al., “System architecture directions for network sensors,” in Proc.
ASPLOS, Nov. 2000.

[18] H.-S. Kim, H. Im, M.-S. Lee, J. Paek, and S. Bahk, “A measurement study
of TCP over RPL in low-power and lossy networks,” J. Commun. Netw.,
vol. 17, pp. 647–655, Dec. 2015.

[19] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proc. ACM MobiSys,
2003.

[20] S. Jeong et al., “MAPLE: Mobility support using asymmetric transmit
power in low-power and lossy networks,” J. Commun. Netw., vol. 20, no. 4,
pp. 414–424, 2018.

[21] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure
of fairness and discrimination for resource allocation in shared computer
systems,” ACM Trans. Comput. Syst., 1984.

[22] X. Kaixin, G. Mario, Q. Lantao, and S. Yantai, “Enhancing TCP fairness
in ad hoc wireless networks using neighborhood RED,” in Proc. ACM Mo-
biCom, pp. 16–28, Sept. 2003.

[23] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, and A. Terzis, “Evalu-
ating the performance of RPL and 6LoWPAN in TinyOS,” in Proc. IP+SN,
Apr. 2011.

[24] J. Ko et al.,“Beyond interoperability: Pushing the performance of sensor
network IP stacks,” in Proc. ACM SenSys, 2011.

[25] S. Duquennoy, F. Österlind, and A. Dunkels, “Lossy links, low power, high
throughput,” in Proc. ACM SenSys, 2011, pp. 12–25.

[26] T. Zheng, A. Ayadi, and X. Jiang, “TCP over 6LoWPAN for industrial
applications: An experimental study,” in Proc. IFIP NTMS, 2011.

[27] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP
performance over wireless networks,” in Proc. ACM MobiCom, 1995,
pp. 2–11.

Mingyu Park received his B.S. degree in Computer
and Information Communications Engineering from
Hongik University in 2017. He is currently a grad-
uate student in Computer Science and Engineering,
Chung-Ang University, Seoul, Republic of Korea. He
is also a Research Assistant at the Networked Systems
Laboratory (NSL) led by Dr. Jeongyeup Paek.

Jeongyeup Paek received his B.S. degree from Seoul
National University in 2003 and his M.S. degree from
University of Southern California in 2005, both in
Electrical Engineering. He then received his Ph.D.
degree in Computer Science from the University of
Southern California (USC) in 2010 where he was a
member of the Networked Systems Laboratory (NSL)
led by Dr. Ramesh Govindan. He worked at Deutsche
Telekom Inc. R&D Labs USA as a research intern
in 2010, and then joined Cisco Systems Inc. in 2011
where he was a Technical Leader in the Internet of

Things Group (IoTG), Connected Energy Networks Business Unit (CENBU,
formerly the Smart Grid BU). In 2014, he was with the Hongik University, De-
partment of Computer Information Communication as an assistant professor.
Jeongyeup Paek is currently an Associate Professor at the School of Computer
Science and Engineering, Chung-Ang University, Seoul, Republic of Korea.

