
IEEE INTERNET OF THINGS JOURNAL, 2020 1

Vulnerability of WiFi’s Noise Floor Calibration
Seongmin Kim and Jeongyeup Paek Senior Member, IEEE

Abstract—Most wireless technology, including WiFi, rely heav-
ily on clear channel assessment (CCA) to avoid collisions, not
only among the devices within the same technology, but also
against cross-technology interference. If the CCA threshold is
not configured properly, both the transmission and reception
performance will be seriously affected with behaviors unexpected
from the protocol’s perspective. On the other hand, WiFi uses
an adaptive CCA threshold based on a noise floor calibration
algorithm to account for ambient noise floor changes and slight
differences in hardware. However, this turns out to be a serious
vulnerability of WiFi. In this work, we show that one can
easily generate a wireless signal that can take advantage of the
noise floor calibration algorithm of WiFi to inflate the CCA
threshold and degrade performance significantly. The signal can
be generated from a COTS Zigbee device, and if well designed,
need not be too long nor strong. We show that WiFi is vulnerable
to such attack, and more surprisingly, the network performance
does not recover long after the signal disappears. We exemplify
and verify our findings through extensive real-world experiments
using 5 types of commercial WiFi NICs and 3 different WiFi APs
to show that this is a critical problem that exists in reality and
must be addressed.

Index Terms—IEEE 802.11, Clear Channel Assessment (CCA),
Cross Technology Interference, Internet of Things (IoT),

I. INTRODUCTION

Wireless technology is prevalent in today’s everyday life.
In the upcoming Internet of Things (IoT) era, we will be
surrounded by a vast number of wireless networks and devices,
not only WiFi, but also Bluetooth, Zigbee, LoRa, WiSUN and
many more [1]. These different wireless technologies have
their own unique protocols to communicate among themselves,
and cannot communicate with other technology1, but can still
interfere with others due to overlap in the frequency (e.g.
2.4GHz ISM band) [8]–[13]. Nevertheless, many technologies
adopt a common technique (or at least the concept) of carrier
sense multiple access (CSMA) to avoid collisions, not only
among the devices within the same technology, but also
against cross-technology interference by measuring the signal
strength on the channel. There are many different ways of
implementing this, but the concept of CSMA is widely adopted
for its simplicity and effectiveness.

To enable CSMA, first and the most important thing we
need is the clear channel assessment (CCA) mechanism and its
threshold, also known as the energy detection (ED) threshold2.

S. Kim and J. Paek are both with the School of Computer Science
and Engineering, Chung-Ang University, Seoul, Republic of Korea. (email:
shieldnet@cau.ac.kr, jpaek@cau.ac.kr). J. Paek is the corresponding author.

This research was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2020R1F1A1051282).

1There are some recent research efforts on cross-technology communication
(CTC) [2]–[7], but only in a limited setting. More on this in SectionV-C.

2Some technologies treat CCA and ED thresholds separately, while others
regard them as identical. WiFi (IEEE 802.11) uses one value for both.

The baseline reference point of this CCA/ED threshold is the
estimated noise floor, which could be a hard-coded value at
design/manufacturing time, or a continuously estimated and
calibrated value at run-time, the focus of our work. Suppose
that this estimated noise floor, either hard-coded or calibrated
at run-time, was set incorrectly or not set as desired. Then, the
wireless interface will effectively become deaf; transmitters
will be unable to assess the existence of other transmitters
(clear channel), nor the receivers will be able to detect whether
other devices are sending signals to it (energy detection).
Thus, multiple transmitters may transmit simultaneously (CCA
failure) and receivers will be unable to receive packets (ED
failure), resulting in a malfunctioning wireless network.

Motivated by our real-world experiences, in this work,
we show that this phenomenon exists in reality and can be
reproduced. We show that a potential malicious attacker can
easily neutralize a WiFi network by generating a wireless
signal that can take advantage of the noise floor calibration
algorithm of WiFi to inflate3 the CCA threshold and degrade
performance significantly. The signal can be generated from
a commercial off-the-shelf (COTS) Zigbee device, and if well
designed, need not be too long nor strong (well below jamming
level). This phenomenon is due to the noise floor estimation
and adaptation mechanism of WiFi, whose purpose is to
account for ambient noise floor changes and slight differences
in hardware (e.g. HW imperfections). Details of how this noise
floor calibration algorithm should be implemented is left to
the manufacturer in the IEEE 802.11 standard [14] “section
17.3, CCA requirements”, and this turns out to be a critical
vulnerability of WiFi.

More surprisingly, although the calibrated noise floor recov-
ers back to the normal value after the noise-inflating signal
disappears (to the value before the noise-inflating signal was
introduced), the network performance (i.e. throughput) does
not recover back to its original value for a long duration of
time. This is due to an unanticipated behavior in the auto
rate control algorithm of WiFi which adapts its modulation
and coding scheme (MCS) to the packet losses experienced
during the noise-inflated and CCA-malfunctioning time period.
This is something that the software implementations of many
popular WiFi chipsets did not expect to happen. Unfortunately,
unless the firmware and device driver of WiFi NICs are fully
released as open source by the manufacturer4, it is challenging
to know for sure exactly what interaction is occurring between
the auto rate control and noise floor calibration of WiFi, and
what is happening on the devices internally regarding noise

3We use the verb ‘inflate’ to concisely express and mean ‘increase or raise
excessively beyond true value or normal operating range’.

4There is one open source firmware we found for AR9271, open-ath9k-
htc-firmware [15], but it is experimental and does not provide noise floor
information nor implement CCA calibration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 2

Signal
Power
(dBm)

Weak	Signal
Generated

-86

Z

-62

Y

Z'+24

WiFi	Signal

CCA	Threshold

Noise	Floor
	Generated	Signal

Strong	Signal
Generated

Z'

Z+24

C1 C2 C3

Fig. 1. Various situations with CCA threshold calibration.

floor estimation and CCA mechanism. Instead, we take an
indirect approach to understand this problem. We show how
aforementioned phenomenon can happen universally through
extensive experiments using 5 different WiFi NICs and 3
different WiFi APs with different chipsets and device drivers.

The contributions of this paper are three fold:
• Identify the problem that one can easily manipulate the

noise floor calibration mechanism of WiFi using a signal
generated by a Zigbee device.

• Demonstrate how inappropriately calibrated noise floor
impact WiFi’s performance.

• Show that this problem is universal, the performance may
not recover even after the interfering signal disappears,
and thus the noise floor calibration is a critical vulner-
ability of WiFi that must be addressed. Once the root
cause of the problem is identified correctly, solution is
straightforward.

The remainder of this paper is organized as follows: Sec-
tion II provides a brief background on WiFi’s CCA mech-
anism. Then in Section III, we discuss the vulnerability of
WiFi’s noise floor calibration in detail through extensive
experiments using various scenarios and devices to show the
performance problem when a noise-inflating Zigbee signal is
introduced into a WiFi network. We characterize the noise-
inflating signal in Section IV, and suggest potential counter-
measures in Section V. We conclude the paper in Section VII.

II. BACKGROUND ON WIFI’S CCA

This section provides a brief background on WiFi’s CCA
and noise floor calibration algorithm.

A. Terminology

Noise floor is the measure of signal created from the sum of
all noise sources and unwanted signals within a measurement
system, where ‘noise’ is defined as any signal other than
the one being monitored [14]. For WiFi, noise floor is the
ambient/thermal noise of specific channel that the device
senses, which may include artificial signal from other devices.

CCA threshold is the clear channel assessment threshold
used for carrier sensing and energy detection. Carrier sensing

is provided by the PHY layer5, and is a measuring of the
signal strength on the channel. If it is above a certain level,
the medium is considered ‘busy’ [17].

MCS is the set of modulation and coding schemes used by
WiFi, among which WiFi will select one to be used adaptively
at run-time based on the link quality it experiences. It has
direct impact on the physical data rate and error resilience
of the WiFi link. Higher the modulation, better the throughput
but more fragile to noise or interference. Higher coding rate is
more robust to noise or interference, but lower the throughput.
If a WiFi device experiences several packet losses or CRC
errors, it will lower the MCS for reliability. If there are no
losses for several consecutive packets, MCS will be increased
for higher throughput.

IEEE Std 802.11-2016, section 17.3.10.6 mandates CCA
requirements. According to the standard, CS/CCA mechanism
shall detect a medium busy condition within 4 microseconds of
any signal with a received energy that is 20∼24 dBm above the
minimum MCS sensitivity. The exact value is implementation
dependent. So, the CCA threshold (which is identical to energy
detection threshold, ED) can be represented by,

CCA threshold = ED = NF + 24 (1)

where the CCA threshold (ED) depends directly on the noise
floor (NF) with a minimum NF value of -95 dBm mandated
by the standard [14]. For example, minimum calibrated noise
floor of the Atheros ath9k driver is -86 dBm [18], and thus
the lowest CCA threshold of WiFi chips using ath9k driver is
-62 dBm.

B. Possible cases with inflated noise floor

With noise floor calibration algorithm in place, let’s enumer-
ate the possible cases that may occur when interference signal
is introduced to WiFi devices. For the purpose of illustration,
consider Fig. 1 where the baseline noise floor is -86 dBm, CCA
threshold is calculated as NF+24 (as in Eq.(1)), Y represents
the received signal strength (RSS) of legitimate WiFi signal,
and Z (and Z ′) represent the RSS of interfering signal when
introduced. Then, we have three cases;
• C1 : there is no interfering signal (‘normal state’),
• C2 : interfering signal with RSS Z such that Z + 24 < Y
• C3 : interfering signal with RSS Z ′ such that Z ′+24 > Y

In case C1 where there is no interfering signal, noise floor is
set to the default minimum value (set by the implementation),
and legitimate WiFi signals have sufficiently larger strength
than the CCA threshold. This is the ‘normal state’ in which
we expect (and want) the protocol to operate in. In case C2, an
interfering signal with RSS of Z > -86 dbm has increased the
estimated noise floor of WiFi device to Z dBm. Nevertheless,
the calibrated CCA threshold (Z + 24) is still below the
strength of legitimate WiFi signal (Y), and thus CCA will
operate as intended.

However in case C3, stronger interference signal (of strength
Z ′) has increased the CCA threshold (Z ′ + 24) beyond the

5In fact, Carrier Sense (CS) mechanism in WiFi consists of both physical
CS and virtual CS. However, Virtual CS [16] is out of the scope of this work.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 3

3
.8

7
m

5.70m

WiFi NIC

Zigbee Node

2 m

2 m

Tx

Rx

(a) Experiment setup

CTI
Signal

Time(sec)

Th
ro

u
gh

p
u

t(
M

B
/s

)

0 50 100 150 200 250 300

-90

-80

-70

-60

-50

1

2

3

4

5

6

0

N
o

ise Flo
o

r (d
B

m
)

(b) Throughput of WiFi flow, and the noise floor
estimated by WiFi Tx and Rx.

CTI
Signal

Time(sec)

Th
ro
u
gh
p
u
t(
M
B
/s
)

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

(c) Transmission time per second (at Tx device)
represent channel utilization.

Fig. 2. Experiment setup and results with two AR9380 WiFi devices in ad-hoc mode and one interfering Zigbee node in the middle. Shaded area in the plots
represent the duration of interfering signal.

strength of legitimate WiFi signal (Y). In this case, WiFi Tx
will always assess the channel as ‘clear’ since the strength of
any other signal will always be less than the CCA threshold.
For the same reason, WiFi Rx will also be unable to detect the
existence of any WiFi signals, resulting in repeated collisions
and failure of receptions. For example, if we can generate
an interfering signal that is perceived as RSS of -60 dbm at
the WiFi devices, then legitimate WiFi signals would need
to be stronger than -36 dBm for the WiFi network to operate
correctly. Otherwise, significant compromise in performance
is inevitable. We will show this in the next section.

III. VULNERABILITY ANALYSIS OF WIFI’S CCA

This section investigates the vulnerability of WiFi’s CCA
and its noise floor calibration algorithm, and presents our
findings through extensive experiments using various scenarios
and devices.

A. The Problem – Main Result

It is well known that the IEEE 802.15.4 (a.k.a. Zigbee)
overlaps in 2.4 GHz frequency band with the IEEE 802.11
(a.k.a. WiFi), and cross-technology interference (CTI) is a
challenging problem between the two despite both adopt CCA
to avoid collisions [19]. It is also well known that due to
lower transmit power (-21∼5 dBm for Zigbee, 20 dBm for
WiFi) and data rate (which results in longer RX-TX/TX-
RX switching times), Zigbee is usually the victim of the
challenge [8]–[10]; i.e. it is usually the Zigbee network that
suffers more when competing with WiFi. However, even with
this relatively inferior David versus Goliath like contention,
it is possible for a Zigbee device to disrupt WiFi’s commu-
nication by generating a CTI signal that inflates the noise
floor experienced by WiFi devices. A single 127 byte packet
may not be long enough, but a Zigbee signal with adequate
length (∼1 sec) and power can raise the CCA threshold of
WiFi beyond the appropriate operating range and degrade its
performance significantly in terms of both loss and throughput.
This lengthened Zigbee signal, also known as the ‘continuous
wave (CW)’ feature in many IEEE 802.15.4 chipsets, can be
generated by several popular COTS Zigbee devices such as

TI CC2650-LaunchPad [20], NXP FRDM-KW36 [21], and
Nordic nRF52840 [22], just to name a few.

To exemplify this in a real-world setting, we have conducted
an experiment using two WiFi devices and one Zigbee device
in an office environment. Fig. 2(a) illustrates the setup, where
all devices are placed on tables (∼1 m above ground) and
the distance between WiFi Tx and WiFi Rx is ∼4 meters.
Atheros AR9380 chipset [23] with ath9k driver6 is used for
WiFi in ad-hoc mode, and TI CC2650-LaunchPad [20] is used
as the Zigbee device7. Using this setup, WiFi Tx will transmit
packets to WiFi Rx continuously using iperf, during which we
measure the throughput of WiFi flow, noise floor estimated by
each WiFi device, and the channel utilization of WiFi Tx in
terms of transmit time per second. While doing so, starting
from t = 60 seconds into the experiment, the Zigbee node will
generate a continuous wave signal at Tx power of 5 dBm and
stop at t = 120 sec. The purpose of this experiment is to see
what happens on the WiFi devices when there is an interfering
signal from a Zigbee device.

Fig. 2(b) plots the throughput achieved by the WiFi flow, as
well as the noise floor experienced by the two WiFi devices,
Tx and Rx. Furthermore, Fig. 2(c) plots the channel utilization
in terms of time spent for transmission by the WiFi Tx per
second. Before the start of the Zigbee signal (t = [0:60] sec,
‘normal state’), the noise floor estimated by WiFi devices are
around -83∼ -86 dBm, the throughput of WiFi flow is around
4.5MB/s, and the transmission time per second is around
750ms (∼75% channel utilization).

At t = 60 sec, the Zigbee node starts generating its con-
tinuous wave signal. Immediately, the transmission time per
second (Fig. 2(c)) drops sharply for a very short time period
(between t = 60∼61 sec). This is when the WiFi Tx notices
the external signal via CCA and backs off its transmissions
(seizes to transmit). Shortly after that (t > 61 sec), WiFi Tx
starts transmitting again (Fig. 2(c)) despite the fact that Zigbee
signal still persists. The reason for this can be seen in Fig. 2(b)
where the noise floor estimated by the WiFi devices has risen

6ath9k is an open source device driver for Qualcom Atheros WiFi NICs
supporting IEEE 802.11 abg/n.

7We used channel 11 for WiFi (2462 MHz) and channel 22 for Zigbee
(2460 MHz).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 4

WiFi NIC

Zigbee Node

1m

3.5m

Rx

Tx

3
.8

7
m

5.70m

(a) Experiment setup for inflating only the
Tx’s estimated noise floor

CTI
Signal

(b) Throughput and estimated noise floor when only
the Tx’s noise floor is inflated

CTI
Signal

(c) Transmission Time per sec of Tx (channel utiliza-
tion) when only the Tx’s noise floor is inflated

WiFi NIC

Zigbee Node1m

3.5m

Rx

Tx

3
.8

7
m

5.70m

(d) Experiment setup for inflating only the
Rx’s estimated noise floor

CTI
Signal

(e) Throughput and estimated noise floor when only
the Rx’s noise floor is inflated

CTI
Signal

(f) Transmission Time per sec of Tx (channel utiliza-
tion) when only the Rx’s noise floor is inflated

Fig. 3. Two scenarios: noise floor of Tx and Rx inflated in isolation. Subfigures in the upper and lower row present each cases respectively.

to -60∼ -51 dBm; i.e. signal from the Zigbee node has raised
the noise floor of WiFi devices. Since the noise floor ascended,
both the CCA and ED thresholds must have increased as well
to -36∼ -27 dBm (Section II), beyond the signal strength of
legitimate WiFi signal. Thus the WiFi Tx becomes deaf against
external signal (CCA failure), and the WiFi Rx is unaware of
the transmission from the Tx (ED failure). Because the WiFi
Tx is incorrectly assessing the channel as clear, it proceeds
with its transmissions (t = [61:75] sec in Fig. 2(c)) only to fail
(t = [61:75] sec in Fig. 2(b)).

Soon after (t = [75:120] sec), WiFi Tx realizes that it is ex-
periencing a lot of packet losses (or ACK losses), and reduces
its transmissions to a very low rate (Fig. 2(c)). Although ath9k
driver does not provide MCS information in ad-hoc mode,
we conjecture that the MCS has gone down to the lowest
level at this point. Note, however, that the transmissions have
not stopped completely; Tx is still attempting sporadically
(t = [90:120] sec in Fig. 2(c)) only to fail at the receiver with
zero throughput (t = [90:120] sec in Fig. 2(b)), which will keep
the Tx at the lowest MCS and backoff-and-retry rate.

At t = 120 sec, the Zigbee node stops generating the noise-
inflating signal. At this point, you would expect the noise floor
to go down immediately, just like it increased immediately at
around t = 60∼61 sec. Unlike our expectation, however, it does
not. The noise floor of both the WiFi Tx and Rx remain at
around -60 dBm for another 60 seconds till t = 180 sec, after
which the noise floor returns back to where it was before the
noise-inflating Zigbee signal was introduced (-85∼ -83 dBm).

During the first half of this period (t = [120:150] sec), WiFi
transmissions start to succeed slowly. This is because, although
the noise floor has not returned back to its original value

yet, external interference at the Rx side has actually been
removed, and this allows some packets to be detected and
decoded correctly at the Rx side. This process is slow because
Tx was in the lowest MCS and backoff-and-retry rate dur-
ing t = [90:120] sec. Nevertheless, these packet delivery suc-
cesses will help the Tx to gradually increase its transmission
rate (t = [120:150] sec in Fig. 2(c)). Only after the second
half of this period (t = [150:180] sec), the channel utilization
(Fig. 2(c)) of the WiFi Tx returns back to where it was before
the noise-inflating signal was introduced (∼75%).

Nevertheless, the throughput achieved by the WiFi flow
after it has gone through the noise-inflating signal (∼3 MB/s)
still does not fully recover to where it was before the signal
was introduced (∼4.5 MB/s). It achieves only 2/3 of what it
should, and this trend continues even after t = 180 sec when the
noise floor of both the Tx and Rx returns back to the normal
value. More surprisingly, it continues indefinitely (for some
WiFi NICs) until unless we disconnect and reconnect the WiFi
association. This is a serious problem, and it is an unexpected
consequence of the noise floor calibration and MCS adaptation
algorithms of WiFi.

Since there was no competing WiFi traffic in this experi-
ment, the reasons for the throughput reduction are as follows;
When the noise floor is inflated, Tx transmits regardless of
interfering signal because its CCA is malfunctioning. When
there is interfering signal, Rx cannot decode the packets
correctly. When the noise floor is high, Rx cannot detect the
transmissions correctly. If the Rx is not returning ACKs, Tx
will backoff and reduce its MCS level. Finally, it takes some
time for the noise floor and MCS level to return back to the
normal state. Then the remaining questions that need to be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 5

answered are,
• Can the problems at Tx and Rx be reproduced in isolation?
• Does this phenomenon occur for other WiFi devices and

configurations (ad-hoc mode vs. AP mode)?
• How long does it take for an interfering signal to inflate the

noise floor experienced by WiFi, and how long does it take
to recover back to the original value?

• What are the characteristics of such noise-inflating signal?
• What happens when there are competing WiFi traffic?
We discuss these question in the following subsections.

B. Tx and Rx, noise-inflated in isolation

In Section III-A, the problem was identified for the case
where the noise floor of both the WiFi Tx and Rx was inflated
simultaneously. In this subsection, we inflate the noise floor
of Tx and Rx separately to investigate its impact in isolation
since they will have different influence on performance.

For this purpose, we use setups as in Figs. 3(a) and 3(d).
We use two WiFi devices (circle) for Tx and Rx at 3.5 m
distance, and an interfering Zigbee node (triangle) is placed
at 1 m distance from the target WiFi device (either Tx or Rx)
with Tx power of -6 dBm. The setup was intended to inflate
the noise floor of just one WiFi device, either Tx or Rx, but
not both. Subfigures in the top and bottom row of Fig. 3 each
represent either Tx or Rx noise-inflated scenario, respectively.

Figs. 3(b) and 3(e) plot the throughput and estimated
noise floors of Tx and Rx, and Figs. 3(c) and 3(f) plot the
transmission time per second for each scenario. It can be
seen that when the interfering Zigbee signal is introduced at
t = 60 sec, only the estimated noise floor of either Tx or Rx is
inflated to around -60 dbm (from -90∼-84 dbm), but not both.

Regardless, the overall trend of the throughput and chan-
nel utilization are very similar to Fig. 2 in Section III-A.
Throughput is decreased significantly for both scenarios im-
mediately after the interfering signal has started, and recovers
back ∼2 minutes after the noise-inflating signal disappears.
Transmission time per second drops sharply for a very short
time period at the moment when the interfering signal is
first detected (between t = 60∼61 sec), but blind transmission
attempts (CCA failure due to inflated noise floor) are made
even when Zigbee signal persists (t = [61:75] sec) only to fail.
Then follows a period of lowest transmission rate during
t = [90:120] sec, after which transmissions resume and channel
utilization returns back to where it was before (∼800 ms/s).

However, the two cases have slightly different (and in-
teresting) reasons for the drop in performance. When the
interfering signal is introduced to the Tx, Tx will first assess
the channel as busy and back off. Once the noise floor of
Tx is inflated, Tx will assess the channel as clear despite
interference, and resume its transmissions (t = [61:75] sec in
Fig. 3(c)) only to fail due to interference. After a period of
frequent packet losses, Tx will reduce its MCS level, and will
continue its transmissions at a lower PHY rate (t = [75:120] sec
in Fig. 3(c)). On the other hand, when the interfering signal
is introduced to the Rx, Rx will have difficulties in decoding
the packets that may be corrupt due to interference. Once the
noise floor of Rx is inflated, Rx will also have difficulties in

CTI
Signal

Time(sec)

Th
ro
u
gh
p
u
t(
M
b
yt
e/
s)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Fig. 4. Throughput comparison of five different types of WiFi NICs when
noise-inflating signal is introduce for 60 seconds.

detecting the packets sent to itself, although it was partially
receivable in our 3.5m setup. Either way, Rx will not return
ACKs properly, which will result in timeouts, backoffs, and
lowered MCS at the Tx (t = [75:120] sec in Fig. 3(f)).

C. Impact of WiFi NIC type

Next, we conduct experiments using five different WiFi
devices to show the impact of NIC type and whether the
problem is universal in other WiFi devices. We use AR9271
(with ath9k-htc device driver), AR9380 (ath9k), Intel wireless
5300 (iwlwifi), iptime AU1000UA (proprietary), and AR9287
(ath9k) for the five WiFi NIC types. All other setups including
the topology (Fig. 2(a)) are identical to our first experiment in
Section III-A, and same type of devices are used in pairs for
Tx and Rx. As before, an experiment consisted of 3 periods:
First period (t = [0:60] sec) is the ‘normal state’ before the in-
terfering signal is introduced, second period (t = [60:120] sec)
is when the interfering signal is present, and the last period
(t = [120:300] sec) is after the interfering signal has stopped.

Fig. 4 plots the change of throughput over time for five
different kinds of NICs in ad-hoc mode. In all cases, we see
significant impact on throughput when interfering signal is
being emitted. In fact, except for A1000UA, other four types
show throughput of close to zero. When the interfering signal
stopped, it took around 30∼40 sec on AR9380, AR9287, and
AR9271 for the throughput to increase back up. For three
out of five device types (AR9380, AR9287, and Intel5300),
however, the throughput is not fully recovered indefinitely8

even after the interfering signal disappeared and noise floor
has returned back to the values before the interfering signal
was first introduced. These results are consistent with the those
in Section III-A, which indicates that this is not a problem of
just one device type. Only one device (A1000UA) out of five
maintained similar throughput before and after experiencing
the interfering signal. Although we could not confirm what
is happening in the A1000UI internally due to lack of API
and proprietary device driver, our observations indicate that
A1000UI is using a fixed threshold for CCA.

8Although the plot shows only up to 300 sec, we have monitored it for
much longer durations, sometimes even overnight, to confirm our claim.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 6

WiFi NIC

Zigbee Node

AP

AP
1m

1m

2m

2m

Rx

Tx

3
.8

7
m

5.70m

(a) Experiment setup for AP mode

CTI
Signal

Time(sec)

Th
ro
u
gh
p
u
t(
M
b
yt
e/
s)

0 50 100 150 200 250 300

1

2

3

5

7

4

0

6

(b) Throughput comparison of three different types of
AP, and AP mode vs. ad-hoc mode

CTI
Signal

0 50 100 200 250 300
0

20

40

60

80

100

120

Time(sec)

140

150

P
H

Y
ra

te
(M

b
p

s)

(c) MCS level dynamics when interfering signal is
introduced, for 3 NIC types in AP mode with AP(1).

Fig. 5. Experiment setup and results for the AP mode evaluation using three different APs. Shaded area represent the period of interfering signal.

D. Impact of WiFi mode – Ad-hoc vs. AP

So far, all experiments were done in ad-hoc mode of WiFi
to see the behavior at Tx and Rx node independent from
any influence of an access point (AP). In this subsection, we
conduct experiments in AP mode using three different APs and
compare their results. For this purpose, we use two commercial
APs, an ASUS ‘RT-AC58U’ WiFi router (AP(1)) and a Cisco
‘Linksys E1200’ WiFi router (AP(2)), both supporting IEEE
802.11n in 2.4GHz band. We also use an AR9271 NIC as an
AP running ‘Host-AP’ driver [24]. For the end devices (Tx and
Rx of data traffic), we use the same AR9380 NIC as the first
experiment in Section III-A. Fig. 5(a) depicts the experiment
setup.

Fig. 5(b) plots the throughput over time for three dif-
ferent APs as well as the result from the ad-hoc mode
experiment. In all cases, throughput plunges to almost zero
during t = [60:120] sec when interference signal is introduced.
However, their behavior of recovery after the interfering signal
disappears is slightly different for each case. AP(1) and AP(2)
cases partially regain their throughput immediately, but it
takes around 110 sec for Host-AP to regain its throughput
(t = 225 sec) whereas it took around 40 sec for ad-hoc mode.
Furthermore, AP(2)’s throughput is never fully recovered
indefinitely, as is for the ad-hoc mode case. The difference
comes from whether and how the AP is calibrating its noise
floor, and how it adapts its MCS in response to that. These
results show that the problem exist not only in the ad-hoc mode
of WiFi but also in the AP mode for popular commercial APs.

E. PHY rate (MCS) adaptation in AP mode

To understand how PHY rate changes over time in response
to noise-inflating interference signal, we conducted additional
experiments using three different types of NICs in AP mode
with AP(1)9 on the same setup as Fig. 5(a). It can be seen
from Fig. 5(c) that PHY rates drop sharply to the lowest value
during the period of interfering signal. Thereafter, once the
interfering signal disappears, it takes some time for the PHY
rates to recover back, sometimes only partially. Specifically,
it took over 100 sec for AR9380 to return back to its original

9MCS information was not available in ad-hoc mode on ath9k driver.

TABLE I
PERFORMANCE REDUCTION RATIO (BEFORE AND AFTER THE

NOISE-INFLATING INTERFERENCE SIGNAL) FOR 18 DIFFERENT
SCENARIOS.

Device
Setup AP-1 AP-2 Host-AP Ad-Hoc

AR9380 12.7% 42.8% 59.0% 41.3%
AR9287 13.0% 52.2% 13.8% 61.5%
intel5300 39.6% 43.5% - 83.2%
AR9271 33.4% 43.3% 48.7% 1.6%

A1000UA 4.2% 5.4% - 3.2%

PHY rate. For AR9271 and AR9287, although their PHY
rates did increase immediately after the interfering signal
disappeared, they never fully returned back to their original
values before experiencing the noise-inflating signal.

In fact, to see the overall throughput reduction ratio after
experiencing an noise-inflating interference signal, we have
experimented on all 18 possible setups that we can create
using five different WiFi NICs and two different connection
modes with three different APs10. Table I summarizes the
result. For example, if we use AR9380 as the WiFi Tx and
Rx going through AP(1), then the throughput is degraded
12.7% compared to the normal state after going through the
interference signal. It can be seen that 14 out of 18 cases had
throughput reduction of more than 10%.

F. Multiple concurrent WiFi flows

So far, we have investigated the noise-inflation problem in
various scenarios but all with a single WiFi flow only. In this
subsection, we consider a scenario where two concurrent WiFi
flows are sharing the channel. Fig. 6(a) depicts the experiment
setup. Two pairs of WiFi Tx and Rx nodes (AR9380 and
AR9271, respectively) communicate in ad-hoc mode, and two
Zigbee devices (TI CC2650) are placed close to each WiFi
Tx-Rx pair.

Fig. 6(b) plots the throughput of two WiFi flows as well
as the noise floor estimated by each transmitter node Tx1 and
Tx2. Fig. 6(c) plots the transmission time per second which
represent the channel utilization for each transmitter. If we

10Host-AP [24] did not support intel5300 and A1000UA.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 7

`
WiFi NIC

Zigbee Node

1m

1m

2m

1m

1m

1.5m

Tx(2)

Rx(2)

Rx(1) Tx(1)

3
.8

7
m

5.70m

(a) Setup for 2-flows experiment

CTI
Signal

Th
ro

u
gh

p
u

t(
M

B
/s

ec
)

N
o

is
e

Fl
o

o
r(

d
B

m
)

0 50 100

Time(sec)
300200 250150

0

1

2

3

4

5

6

(b) Throughput of 2 WiFi flows, and the estimated
noise floor at the two transmitters Tx1 and Tx2.

CTI
Signal

(c) Transmission time per second (channel utiliza-
tion) of the two transmitters Tx1 and Tx2.

Fig. 6. Experiment setup and results for 2 concurrent WiFi flow case. Shaded area represent the period of interfering signal.

compare this with the single flow case in Fig. 2, other than
the fact that the channel (throughput and utilization) has been
shared by the two contending flows, the overall trend looks
very similar. During the interfered period (t = [60:120] sec),
the estimated noise floor jumps from -85∼-80 dbm to around
-60 dbm (which means CCA threshold of -36 dbm), and the
throughput of both flows drop close to zero. Even when the
interfering Zigbee signal stops at t = 120 sec, it takes another
30∼40 sec for the throughput to ramp up again. Furthermore, it
takes around 50∼100 sec for the estimated noise floor to drop
back to the original value. Most importantly, the throughput
(both individual and aggregate) never fully recovers back to
where it was before the noise-inflating signal despite the fully
recovered aggregate channel utilization. Thus, it can be said
that the findings from the single flow experiments still hold
for the multi flow scenarios.

IV. CHARACTERIZATION OF INTERFERING SIGNAL

In the previous section, we have shown that an interfering
Zigbee signal can raise the noise floor perceived by WiFi and
seriously impact its performance. However, it does not mean
that any Zigbee signal will cause such problem. Thus, in order
to understand when such problem occurs in a practical setting,
we characterize the problem-causing interference signal in this
section.

Consider an office environment (e.g. Fig. 5(a)) where there
is a WiFi AP and users connect to the Internet via wireless
LAN through this AP. This is a realistic and popular setting
which most of us are familiar with today. Assuming that WiFi
devices are using the default TX power of 20 dBm and most
users are within ∼10 m radius from the AP, the perceived RSS
for legitimate WiFi device will be roughly in the range of -
20∼ -50 dBm. That means, based on Eq.1 and Fig. 1, the noise
floor estimated by the WiFi devices should be kept sufficiently
below -74 dbm for this WiFi network to operate correctly.
Otherwise, the interfering signal will have impact on WiFi’s
performance.

From the opposite point of view, a malicious attacker who
wishes to launch a denial-of-service (DoS) attack to this WiFi
network would need to generate a 2.4GHz signal that inflates
the noise floor estimated by WiFi above this point. Then,
in order to find and characterize such an interfering signal,

we have conducted a series of experiments while varying the
distance, transmission power, and duty-cycle of the interfering
signal.

In the first experiment, a Zigbee device (CC2650) is placed
at [0, 5]m distances with 1 m interval in line-of-sight from a
WiFi device (AR9380), and five different Tx power setting was
chosen from [-21, -12, -6, 0, 5] dBm. Then for each distance-
power configuration, interference signal was generated contin-
uously, i.e. with 100% duty cycle, while the value of WiFi’s
estimated noise floor was measured at one second interval.
Fig. 7(a) plots the average noise floor estimated at the WiFi
device. Intuitively, it increases with Tx power and decreases
with distance. This is obvious. However, there are two things
to note here. First is that the maximum value of calibrated
noise floor is limited to -60 dBm even if the RSS perceived
by the device has a higher value. This is an implementation
dependent decision made by the device driver of the WiFi
NIC [18]. Secondly, interfering signal with TX power of 0 dbm
or higher can impact the performance of WiFi even at 5 m
distance or further. This means that an attacker need not be
very close to the victim device when launching a DoS attack.

Next, we consider a more realistic scenario where instead of
transmitting a continuous signal for a long duration, an attacker
uses a short bursts of duty-cycled signal to avoid detection.
This is similar to what is known as stealthy jamming [25].
Fig. 7(b) shows an example of a duty-cycled Zigbee signal
generated from a CC2650 and measured at 100 ms polling
interval using RF studio [26]. This example has 250 ms cycle-
time and 50% duty-cycle (i.e. signal on for 125 ms, and off
for 125 ms). Using this method, we generated an interfering
signal with [5, 10, 20]% duty-cycles and 30 second cycle-time,
starting from t = 90 sec into the experiment, and measured the
estimated noise floor on the WiFi devices. For example, 5%
means the signal was on for 1.5 sec, and off for 28.5 sec,
every 30 seconds. Fig. 7(c) plots the calibrated noise floor
at the WiFi devices over time. It shows that as low as 10%
duty-cycled (i.e. 3 seconds in every 30 seconds) interfering
signal is sufficient to inflate the noise floor of WiFi devices
and compromise communication performance.

Of course, to successfully accomplish this attack with such
a low duty-cycle, the attacker needs two hints. First hint is the
noise floor calibration algorithm of the target NIC; e.g. Alg. 1
for ath9k device driver. Although this is implementation de-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 8

-21 -12 -6 0 5
Tx Power (dBm)

0
1

2
3

4
5

D
is

ta
nc

e
(m

)

-75 -72 -60 -60 -60

-90 -83 -76 -66 -62

-90 -85 -78 -69 -65

-90 -88 -82 -70 -67

-90 -90 -82 -72 -71

-90 -90 -86 -73 -72
90

85

80

75

70

65

60

(a) By distance and Tx power

-40

-60

-80

-100

-120

-20 RSSI(dBm)

Time(s)

(b) Interfering signal example at 50% duty-cycle
with 250ms period.

CTI
Signal

30sec period

(c) Calibrated noise floor over time when interfering
signal with various duty-cycle is introduced.

Fig. 7. The relationship between noise floor vs. distance, Tx power, and duty-cycle.

Algorithm 1: Noise floor estimation and calibration
algorithm of ath9k

SIZE ← 5;
DEFAULT NOISE ← −95;
nf history[SIZE];
noise floor ← DEFAULT NOISE;
now index ← 0;
while not NF calibration error occurred do

nf history[now index] ← noise value;
if not nf history is full then

noise floor ← nf history[now index];
else

nf buffer ← nf history;
sort(nf buffer);
noise floor ← nf buffer[SIZE / 2];

end
now index ← (now index+1) %5;
Wait 30 seconds;

end

pendent, ath9k uses historical noise floor (NF) measurements
in a circular array of size 5, measured every 30 seconds, and
adopts the median as the calibrated noise floor. This is the
reason why noise floor jumped at t = 150 sec (third 30 sec
cycle) instead of t = 90 sec (first cycle) in Fig. 7(c); it was
waiting for a third high value as the median in a size-5 array.
Second hint is the starting time boundary of a NF measurement
cycle, as shown as shaded rectangles in Fig. 7(c). It turns
out that the NF measurement cycle period starts from the
time when WiFi association is made, and it is possible for an
attacker to figure this out by sniffing the association frames
on promiscuous mode with packet capture tools [27]. Thus we
can conclude that an adversarial can easily neutralized a WiFi
network at a distance by generating a Zigbee signal with a
reasonably low transmission power and as low as 10% duty-
cycle. This is a serious threat to WiFi.

V. POTENTIAL COUNTERMEASURES

The main contribution of this work is in identifying the
problem of WiFi’s noise floor calibration mechanism (con-

forming to IEEE 802.11 standard), and to show how vulnerable
it is against unintended interference signal or attack. We
have shown that it is a critical problem which seriously
affects network performance (for duration longer than the
interfering signal), and also a universal problem that must
be addressed. Once and if the root cause of the problem is
identified precisely, practical solution is straightforward if not
trivial. We discuss a few of those potential countermeasures
in this section. However, please note that the countermeasures
are simple because the problem has been identified, and our
contributions are in identifying the problem, not in proposing
these straightforward solutions.

A. Bounds on NF and CCA threshold

A naive method to address the aforementioned problems
caused by dynamic adaptation of CCA threshold is to not do
dynamic adaptation at all: that is, use a fixed constant value as
the noise floor and CCA threshold. This is a quick-and-simple
fix that can be adopted easily and will work in most cases since
ambient noise is usually measured around -105∼-90 dBm in
most environments. However, this method nullifies the original
motivation and intent of dynamic noise floor calibration, which
is to adjust for the actual differences in measurement values of
ambient noise and also the slight differences in radio hardware.

Then, a better alternative would be to allow the dynamic
adjustment but put an upper bound on NF that is close to -
90 dbm since the problems that we have observed are caused
by the noise floor being significantly inflated (e.g. -60 dbm).
This way, we have the advantage of dynamic calibration within
a plausible (-95∼ -85 dbm) region while blocking the chances
of significant inflation. This solution would be sufficient for
most cases at the cost of not being able to detect rare high
ambient noise situations in which WiFi would not work well
anyway even if noise is real and legitimate.

B. Longer and randomized NF measurement period

To exploit the vulnerability discussed in this work efficiently
and effectively, an attacker would need two hints as described
in Section IV; (1) the noise floor calibration algorithm of
the target NIC, and (2) the starting time/boundary of a NF
measurement cycle. Then the natural defence would be to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 9

obscure these hints. If we take Alg. 1 as an example, we can
first randomize the NF measurement times instead of doing
it at periodic 30 second intervals. We can also increase the
size of historical NF buffer, and take the median of the lower
half of the values instead of the whole set. This way, with
high probability, an attacker would have no way other than to
jam the channel completely. There is no defence against well-
funded powerful wideband jamming attacks [28], but hopefully
detection mechanism can take actions [29], [30].

C. Cross-technology communication (CTC)

Direct communication between heterogeneous IoT protocols
can also be a potential solution to solve the cross technology
interference (CTI) problem. For example, if WiFi and ZigBee
can decode the packets of each other, this will enable coor-
dination of channel access among those devices. Many recent
studies have shown potential to support direct communication
between WiFi, Bluetooth, and ZigBee devices [2]–[7] These
pioneering designs enable cross-technology communications
by embedding bits into various side-channels such as packet
(or symbol) transmission time-frequency shifts and patterns.
However, these techniques have only been explored under
limited lab settings, many do not run on commercial devices,
and will help in resolving the CTI issue if and only if the two
devices are willing to coordinate. Thus, with the current noise
floor calibration algorithm of WiFi, CTC cannot resolve the
problem if the CCA threshold is raised excessively due to an
unknown signal.

VI. RELATED WORK

To the best of our knowledge, there is no research paper that
discusses the vulnerability of WiFi’s noise floor calibration
and CCA mechanism. There is one work by Ock et al. [10]
which briefly mentions such observation while designing a
busytone scheme to protect Zigbee network from WiFi by
exploiting CTI to combat CTI, but it does not delve into the
problem and simply mentions it as a peculiarity of the device
they used. However, our work provides in-depth measurement-
based analysis to investigate the reasons behind such behavior,
and show that the problem exists in many popular WiFi devices
and scenarios.

CTI and co-existence issue between WiFi, Zigbee, and
Bluetooth has been discussed in numerous prior work. For
example, Han et al. [31] considered a smart home scenario
with WiFi and Zigbee devices, and modeled the interference
and CSMA algorithm to find and adapt proper CCA mode
to get better performance. Zhu et al. [32] discussed the
interference issue in heterogeneous multi-radio network, and
proposed a coexistence-aware TXOP adaption which improves
transmission efficiency in a WiFi/Bluetooth dual-radio de-
vice. Bluetooth and WiFi integration [33] and . Wojtiuk et
al. [33] analyzed interference between Bluetooth and WiFi,
and suggested collaborative MAC-level switching between the
two technology to eliminate the interference. BlueCoDE [34]
also investigated the interference issue between WiFi and
Bluetooth, and proposed bonding multiple Bluetooth channels
for improving throughput of both technologies.

Related to the perceived noise floor, Gokturk et al. [35]
suggested a channel selection algorithm that measures SINR
and searches for the channel with lowest noise floor to achieve
maximum physical data rates. Lee et al. [36] modelled envi-
ronmental noise level using noise signatures from real world
measurements in order to accurately simulate wireless packet
delivery in simulators such as TOSSIM, ns2, EmStar, etc.

Several prior work (including aforementioned) discussed the
interference and co-existence issue among different wireless
technologies to suggest improvements [8]–[13] or propose
CTC [2]–[7], but none of them have discussed the vulnerability
of WiFi’s noise floor calibration algorithm and its implication
on CCA mechanism.

VII. CONCLUSION

WiFi implements a noise floor calibration mechanism as
suggested and permitted in the IEEE 802.11 standard. The
original intention was to adapt to ambient noise floor changes
and account for slight differences in hardware. Unfortunately,
however, this turns out to be a critical vulnerability of WiFi.
Estimated noise floor can be manipulated easily using a signal
generated by a COTS Zigbee device with a duty-cycle as low
as 10%, and this inflated noise floor deafens either the Tx or
Rx or both to have significant impact on WiFi’s performance,
sometimes down to zero throughput. More surprisingly, the
performance may not recover fully even long after the inter-
fering signal disappears (recovers only 1/2∼2/3), sometimes
never before re-association. The problem is universal in the
sense that it has been identified in several popular WiFi
devices and APs, for both ad-hoc and AP mode. Thus the
noise floor calibration is a critical vulnerability of WiFi that
must be addressed. Fortunately, once the root cause of the
problem is identified precisely, solution is a straightforward
implementation. To the best of our knowledge, this work is
the first to present these findings.

REFERENCES

[1] “The Growing Trend of IoT Devices,” accessed: 2020-11-10. [Online].
Available: https://cultureofgaming.com/the-growing-trend-of-iot-devices

[2] S. M. Kim, S. Ishida, S. Wang, and T. He, “Free side-channel cross-
technology communication in wireless networks,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 5, pp. 2974–2987, 2017.

[3] W. Jiang, S. M. Kim, Z. Li, and T. He, “Achieving receiver-side
cross-technology communication with cross-decoding,” in Proceedings
of the 24th Annual International Conference on Mobile Computing and
Networking, 2018, pp. 639–652.

[4] W. Wang, S. He, L. Sun, T. Jiang, and Q. Zhang, “Cross-technology
communications for heterogeneous iot devices through artificial doppler
shifts,” IEEE Transactions on Wireless Communications, vol. 18, no. 2,
pp. 796–806, 2019.

[5] Z. Li and T. He, “WEBee: Physical-Layer Cross-Technology Communi-
cation via Emulation,” in Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking (MobiCom’17), 2017,
p. 2–14.

[6] Z. Yin, Z. Li, S. M. Kim, and T. He, “Explicit Channel Coordination via
Cross-Technology Communication,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys’18), 2018, p. 178–190.

[7] X. Guo, Y. He, X. Zheng, Z. Yu, and Y. Liu, “LEGO-Fi: Transmitter-
Transparent CTC with Cross-Demapping,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, 2019, pp. 2125–2133.

[8] X. Zhang and K. G. Shin, “Enabling Coexistence of Heterogeneous
Wireless Systems: Case for ZigBee and WiFi,” in Proceedings of the
Twelfth ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc’11), 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE INTERNET OF THINGS JOURNAL, 2020 10

[9] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in Proceedings of the 10th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks, 2011, pp. 175–186.

[10] J. Ock, J. Paek, and S. Bahk, “QBT: Queue-size based Busy Tones
for Protecting Multihop Low-power Networks,” in IEEE International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2019, pp.
389–397.

[11] “IEEE 802.19 Wireless Coexistence Working Group,” accessed:
2020-11-10. [Online]. Available: http://www.ieee802.org/19/

[12] X. Zhang and K. G. Shin, “Enabling Coexistence of Heterogeneous
Wireless Systems: Case for ZigBee and WiFi,” in Proceedings of the
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2011.

[13] J. Ock, H. Kim, H.-S. Kim, J. Paek, , and S. Bahk, “Low-power Wireless
with Denseness: The Case of an Electronic Shelf Labeling System
- Design and Experience,” IEEE Access, vol. 7, no. 1, pp. 163 887–
163 897, Dec 2019.

[14] “IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) IEEE
Standard for Information technology - Telecommunications and informa-
tion exchange between systems Local and metropolitan area networks -
Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” pp. 1–3534, Dec
2016.

[15] “open-ath9k-htc-firmware for Qualcomm Atheros AR7010 and AR9271
USB 802.11n NICs,” accessed: 2020-11-10. [Online]. Available:
https://github.com/qca/open-ath9k-htc-firmware

[16] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a
media access protocol for wireless LAN’s,” ACM SIGCOMM Computer
Communication Review, vol. 24, no. 4, pp. 212–225, 1994.

[17] P. R. Paul Vrancken, CoSiNe, “IEEE 802.11 Medium Access Control
(MAC) - Clear Channel Assessment.”

[18] “Atheros ath9k Device Driver,” accessed: 2020-11-10. [Online].
Available: https://wireless.wiki.kernel.org/en/users/drivers/ath9k

[19] A. Hithnawi, H. Shafagh, and S. Duquennoy, “Understanding the impact
of cross technology interference on IEEE 802.15.4,” in Proceedings
of the 9th ACM international workshop on Wireless network testbeds,
experimental evaluation and characterization, 2014, pp. 49–56.

[20] “Texas Instruments, CC2650 LAUNCH PAD,” accessed: 2020-11-10.
[Online]. Available: http://www.ti.com/tool/LAUNCHXL-CC2650

[21] “NXP, FRDM-KW36, Freedom Development Kit for
Kinetis,” accessed: 2020-11-10. [Online]. Available:
https://www.nxp.com/design/development-boards/freedom-
development-boards/mcu-boards/frdm-kw36-freedom-development-
kit-for-kinetis-kw36-35-34-mcus:FRDM-KW36

[22] “Nordic nRF52840,” accessed: 2020-11-10. [Online]. Avail-
able: https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/nRF52840

[23] “Atheros AR9380,” accessed: 2020-11-10. [On-
line]. Available: http://static6.arrow.com/aropdfconversion
/bb617b8c7c79a7311d45c8a20f4672e90256ea96/ar9380-al1a.pdf

[24] “Jouni Malinen’s hostapd,” accessed: 2020-11-10. [Online]. Available:
http://w1.fi/hostapd/

[25] J. Heo, J. Kim, J. Paek, and S. Bahk, “Mitigating stealthy jamming
attacks in low-power and lossy wireless networks,” Journal of Commu-
nications and Networks, vol. 20, no. 2, pp. 219–230, 2018.

[26] “TI Smart RF Studio,” accessed: 2020-11-10. [Online]. Available:
https://www.ti.com/tool/SMARTRFTM-STUDIO

[27] “WireShark,” accessed: 2020-11-10. [Online]. Available:
https://www.wireshark.org/

[28] A. D. Wood, J. A. Stankovic, and G. Zhou, “DEEJAM: Defeating
Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks,”
in IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2007, pp. 60–69.

[29] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The Feasibility of
Launching and Detecting Jamming Attacks in Wireless Networks,” in
Proceedings of the 6th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc ’05), 2005, p. 46–57.

[30] J. Heo, Y. Yoo, J. Suh, W. Park, J. Paek, and S. Bahk, “FMS-AMS:
Secure Proximity-based Authentication for Wireless Access in Internet
of Things,” Journal of Communications and Networks, vol. 22, no. 4,
pp. 338–347, April 2020.

[31] T. Han, B. Han, L. Zhang, X. Zhang, and D. Yang, “Coexistence study
for WiFi and ZigBee under smart home scenarios,” in IEEE International
Conference on Network Infrastructure and Digital Content, 2012, pp.
669–674.

[32] J. Zhu, A. Waltho, X. Yang, and X. Guo, “Multi-radio coexistence:
Challenges and opportunities,” in IEEE International Conference on
Computer Communications and Networks, 2007, pp. 358–364.

[33] J. Wojtiuk, “Bluetooth and WiFi integration: Solving co-existence chal-
lenges,” R.F.Design, vol. 27, no. 10, 10 2004.

[34] W. Sun, J. Koo, S. Byeon, W. Park, S. Lim, D. Ban, and S. Choi,
“BlueCoDE: Bluetooth coordination in dense environment for better
coexistence,” in IEEE International Conference on Network Protocols
(ICNP), 2017, pp. 1–10.

[35] M. S. Gokturk and G. Ferazoglu, “Adjacent channel interference aware
channel selection for wireless local area networks,” in IEEE Wireless
Communications and Networking Conference (WCNC), 2014, pp. 2922–
2927.

[36] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” in Proceedings of the 6th ACM International confer-
ence on Information Processing in Sensor Networks (IPSN), 2007, pp.
21–30.

Seongmin Kim is currently an undergraduate stu-
dent at the School of Computer Science and En-
gineering, Chung-Ang University, Seoul, Republic
of Korea. He is also a research assistant at the
Networked Systems Laboratory (NSL) led by Dr.
Jeongyeup Paek.

Jeongyeup Paek received his B.S. degree from
Seoul National University in 2003 and his M.S.
degree from University of Southern California in
2005, both in Electrical Engineering. He then re-
ceived his Ph.D. degree in Computer Science from
the University of Southern California (USC) in
2010. He worked at Deutsche Telekom Inc. R&D
Labs USA as a research intern in 2010, and then
joined Cisco Systems Inc. in 2011 where he was a
Technical Leader in the Internet of Things Group
(IoTG), Connected Energy Networks Business Unit

(CENBU, formerly the Smart Grid BU). In 2014, he was with the Hongik Uni-
versity, Department of Computer Information Communication as an assistant
professor. Jeongyeup Paek is currently an associate professor at Chung-Ang
University, School of Computer Science and Engineering, Seoul, Republic of
Korea since 2015. He is an IEEE senior member and an ACM member.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3045462

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

