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ABSTRACT Low-power wireless network for the emerging Internet of Things (IoT) should be reliable
enough to satisfy the application requirements, and also energy-efficient for embedded devices to remain
battery powered. Synchronized communication methods such as Time Slotted Channel Hopping (TSCH)
have shown promising results for these purposes, achieving end-to-end reliability over 99% with low duty-
cycles. However, they lack one thing: flexibility to support a wide variety of applications and services with
unpredictable traffic load and routing topology due to ‘‘fixed’’ slotframe sizes. To this end, we propose
TESLA, a traffic-aware elastic slotframe adjustment scheme for TSCH networks which enables each node
to dynamically self-adjust its slotframe size at run time. TESLA aims to minimize its energy consumption
without sacrificing reliable packet delivery by utilizing incoming traffic load to estimate channel contention
level experienced by each neighbor. We extensively evaluate the effectiveness of TESLA on large-scale
110-node and 79-node testbeds, demonstrating that it achieves up to 70.2% energy saving compared to
Orchestra (the de facto TSCH scheduling mechanism) while maintaining 99% reliability.

INDEX TERMS Low-power and lossy network, IEEE 802.15.4, TSCH, dynamic scheduling, wireless
network, MAC protocol.

I. INTRODUCTION
Internet of Things (IoT) has opened a new era with low-power
embedded devices. In industrial IoT networks, numerous sen-
sors and actuators are deployed for system monitoring and
remote control. From smart homes to smart cities [1], [2],
new applications and network services are emerging such as
electricity management, home security, health care [3], and
smart grid. As IoT applications become diverse, the need
for reliable, energy-efficient, and flexible (i.e., adaptable to
diverse and dynamic applications) network protocols is grow-
ing up steadily.

The IEEE 802.15.4-2015 [4] standardized the time-
slotted channel hopping (TSCH) protocol for low-power
and lossy networks (LLNs), a promising TDMA-like link
layer protocol providing both high reliability and low
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energy operation. Compared with asynchronous duty-cycled
MAC protocols [5]–[7], time-slot operation of TSCH saves
redundant transmissions or listening for rendezvous time of
data exchange. Additionally, channel hopping enables low-
power communication to be resilient from narrow-band inter-
ference and multipath fading [8]. For the implementation of
TSCH network, timeslot scheduling is required, but how to
build and maintain the schedule is out of scope of the IEEE
802.15.4-2015 standard. For this reason, a number of TSCH
scheduling schemes have been proposed recently, such as
the minimal configuration schedule [9] of 6TiSCH [10] and
Orchestra [11] (Section II-B and II-C).
Challenge: Any well designed protocol can end up with

miserable performance if its parameters are not set appropri-
ately [12]–[14]. Setting proper network parameters has been
one of the most painful tasks in LLNs as well. Since it is
hard to predict the impact of a parameter change on perfor-
mance, it is exhaustive, empirical, and environment specific.
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In addition, a network parameter is usually set as a global
constant (i.e., all nodes have the same value), which cannot
satisfy all nodes having different environments and roles.
This may cause significant inefficiency since each node’s
situation is different and may change at run time, not only due
to its physical surroundings but also routing topology [15],
forwarding traffic intensity [16], [17], and application
behaviors [2], [18].

Parameter selection for TSCH is not an exception. TSCH’s
slotframe structure is the basis of TSCH operation, but its size
is set offline as a fixed global constant. On top of significant
burden for empirical optimization, even if the slotframe size
is optimized, it is still problematic since all nodes share a sin-
gle slotframe size, disregarding routing topology and traffic
intensity for each node: (1) When the slotframe is too small
for the node experiencing low traffic load, it will waste energy
due to idle listening. (2) When the slotframe is too large for
the node under heavy traffic load, it cannot receive/forward
many packets due to channel contention or queue overflow
(Section III). To address this issue, each node should use a
different slotframe size and adjust it with traffic-awareness
at run time. To align with the basic design paradigm of LLN
(simple and low overhead), this adjustment procedure should
be light-weight and operate in a distributed manner based on
local information.
Approach: How can each node self-adjust TSCH slot-

frame size at run time? We introduce TESLA, a novel traffic-
aware elastic slotframe adjustment scheme as a solution
(Section IV). TESLA inherits and extends the Orchestra’s
receiver-based scheduler [11] where each node has a sin-
gle reception (Rx) slot per slotframe and sends a packet
to a neighbor in the neighbor’s Rx slot. Beyond Orchestra,
in TESLA, each node obtains the amount of incoming traf-
fic using locally piggybacked information from neighbors.
It periodically self-estimates the contention level of the neigh-
bors based on the traffic load, and adjusts its slotframe size:
(1) When the contention level is high, it decreases slotframe
size to receive more traffic from neighbors. (2)When the con-
tention level is low, it increases slotframe size to save energy.
(3) Otherwise it maintains slotframe size. Upon slotframe
size change, the node informs its one-hop routing neigh-
bors of the new slotframe size for seamless communication.
Furthermore, TESLA also supports multi-channel operation
to fully utilize available channel resources. Although our
implementation is based on Orchestra, the state-of-the-art
TSCH scheduling mechanism, the core idea of TESLA is
general, applicable to any TSCH scheduling mechanism.
Contributions: The contributions of this work are

threefold.
• Analysis on the impact of slotframe size, showing the
limitation of setting it as a fixed global constant, offline.

• Design of TESLAwhich includes four elements: (1) traf-
fic information exchange by piggybacking on each
frame, (2) contention level estimation, (3) periodic slot-
frame adjustment and sharing, and (4) multi-channel
scheduling.

• Prototype implementation and extensive evaluation on
two distinct testbeds with 110 nodes and 79 nodes
(Section V), showing that TESLA outperforms the state-
of-the-art in terms of reliability and energy-efficiency
using distributed dynamic scheduling.

II. BACKGROUND
In this section, we provide a brief overview of TSCH, and
two instances of TSCH scheduling implementation: 6TiSCH
minimal configuration and Orchestra.

A. IEEE 802.15.4 TSCH
TSCH is a time-synchronous MAC specified in the IEEE
802.15.4-2015 standard [4]. Its synchronous operation saves
energy by reducing redundant transmissions or idle listening
compared to asynchronous MACs [6], [7], [19], and its chan-
nel hopping enables resilient operation over narrow-band
interference and multipath fading [8].

FIGURE 1. An example of TSCH slotframe schedule and timeslot with
slotframe size of 3.

TSCH network is globally time-synchronized, and time
is divided into timeslots as in Figure 1. Typical length of
a timeslot is 10 ms, long enough for a single frame and
an acknowledgement (ACK) to be exchanged. A slotframe
is a collection of timeslots, continuously repeated in time.
The number of timeslots in a slotframe, i.e., slotframe size,
determines the period of each slotframe. Within a slotframe,
time offset is defined aswhen the timeslot occurs, and channel
offset denotes an offset value for channel selection. The total
number of timeslots that has elapsed since the start of a
TSCH network is defined as the absolute slot number (ASN ).
It increases globally every timeslot. In Figure 1, when ASN
is 2, node C can transmit a frame, node D can receive it, and
the others sleep.

For channel hopping, the channel on which a timeslot
operates is determined by the timeslot’s ASN, as

Channel = Listc[(ASN + offsetchannel) % NListc ] (1)

where Listc is a set of channels to be hopped over, offsetchannel
is the channel offset, and NListc is the number of elements
in Listc. By introducing ASN in channel determination,
each timeslot with a fixed offsetchannel can exploit different
frequencies per timeslot. The offsetchannel enables different
channels to be used in the same timeslot.
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Then for each timeslot, a TSCH schedule specifies (1) the
activity (i.e., whether to transmit, receive, or sleep), (2) the
channel to be used for the corresponding activity, and
(3) whether the slot is shared or dedicated. However, how to
build andmaintain the schedule is out of the scope of the IEEE
802.15.4-2015 standard, and is left as an open research prob-
lem. For this reason, a number of TSCH scheduling schemes
have been proposed recently. We will describe the two rep-
resentative state-of-the-arts below, and others in Section VI
as related work. A common characteristic of widely used
TSCH scheduling mechanisms is their simple operation; each
node self-allocates its timeslot without any additional con-
trol packet exchange. This is for robust and energy-efficient
operation on time-varying routing topology in wireless envi-
ronments.

B. 6TiSCH AND ITS MINIMAL CONFIGURATION
In 2013, IETF Working Group 6TiSCH [10] was established
for the purpose of designing IPv6 support on top of TSCH.
6TiSCH defines a TSCH minimal configuration [9], which
is a simple fixed scheduling scheme designed to enable basic
and necessary functions for TSCH network. It simply consists
of a single shared timeslot per slotframe to run IPv6 traffic on
top of low-power TSCH networks with basic interoperability.
This timeslot is used for both transmission and reception of
all nodes in a TSCH network.

C. ORCHESTRA
Orchestra [11] provides autonomous TSCH scheduling
together with the RPL routing layer.1 For the construction
of TSCH and RPL network, Orchestra employs two types of
slotframes. The first is the EB (Enhanced Beacon) slotframe
which has two active timeslots in each node, one dedicated
for EB transmission and the other for EB reception from the
time source. Reliable EB communication is possible since a
channel offset is dedicated for this slotframe and a node’s
reception (Rx) slot is synchronizedwith the transmission (Tx)
slot of its TSCH time source. The second is the RPL shared
slotframe for RPL control packets (DIO, DAO, and DIS),
which has another dedicated channel offset. This slotframe
has one active slot, which is used for both Tx and Rx of all
nodes’ RPL control packets.

In addition, Orchestra proposes two approaches for uni-
cast data communication slotframe, sender-based or receiver-
based, where either of them can be selected. Thus, a total of
three slotframes are employed in each Orchestra implemen-
tation. A different channel offset from EB and RPL shared
slotframes is used for the unicast slotframe. In a sender/
receiver-based schedule, a node self-allocates a single Tx/Rx
slot per slotframe based on its MAC address, respectively.
The time offset is computed as,

offset time = h(MAC) % Ssf (2)

1RPL is the standard IPv6 routing protocol for LLNs. The detailed descrip-
tion and related work for RPL are in [20] and [21], which is out of the scope
of this paper.

where h is a hash function shared in the network, MAC is
the hardware address of the node, and Ssf is the size of the
unicast slotframe. As all nodes use the same hash function,
a neighbor’s schedule can be computed directly based on
the neighbor’s MAC address, without any exchange of addi-
tional control packets. In conjunction with the standard RPL
network layer, Orchestra updates schedules autonomously as
network topology changes.

FIGURE 2. An example of TSCH scheduling in receiver-based Orchestra.

Figure 2 depicts an example of receiver-based scheduling
in Orchestra. R denotes a timeslot allocated for unicast packet
reception. In this example, each node computes offset time of R
using its ID as output of h(MAC) where Ssf is 5. For example,
node 1 or 7 has the offset time of 1 or 2, respectively. When
any node has a packet to transmit towards node 1, it transmits
on the first timeslot within a slotframe. In receiver-based
scheduling, while a node’s Rx slot is single and fixed within
a slotframe, its Tx slots can be multiple; each Tx slot corre-
sponds to Rx slot of each neighbor node. On the other hand,
in sender-based scheduling, a node has a fixed Tx slot and
multiple Rx slots.

III. PRELIMINARY AND MOTIVATION
While the contributions of the state-of-the-art techniques are
substantial in enabling TSCH to operate on embedded devices
in real wireless environments, they have one possible draw-
back: static scheduling with globally identical slotframe size,
which is pre-defined at compile time. Nodes in a network
usually neither transmit nor receive the same amount of
traffic. Depending on routing topology and traffic generation
pattern, each node observes a different volume of traffic.
Consequently, a uniform and constant schedule may bring
about three kinds of undesired situations: (1) A node respon-
sible for forwarding packets more often than its Tx or Rx
timeslots suffers from severe packet losses. (2) A node who
experiences little traffic wastes energy due to idle listening
in timeslots allocated unnecessarily. (3) When routing topol-
ogy or traffic pattern changes, there is nomechanism to adjust
its slotframe size according to network dynamics.

To confirm this hypothesis and motivate our TESLA,
we present a preliminary study on the performance of
three representative state-of-the-arts: 6TiSCH minimal
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FIGURE 3. Various performance metrics in Orchestra and 6TiSCH minimal configuration with different slotframe sizes.

configuration [9], sender-based and receiver-based Orches-
tra [11], implemented on ContikiOS [22].

A. METHODOLOGY
We evaluate the three schemes on FIT/IoT-LAB testbed [23]
with 110M3 nodes having bidirectional traffic. The root node
generates a downward packet every 0.5 second while altering
destinations in a round-robin fashion. Each of 109 non-root
nodes generates an upward packet with the period of 54.5
(=0.5 × 109) seconds to equal the bidirectional traffic load.
Detailed explanations of the experimental settings will be
provided in Section V-A.

For Orchestra, to focus on the impact of unicast slotframe
size, we first optimize the size of RPL shared slotframe on this
testbed. Small RPL shared slotframe size allows successful
and stable RPL network formation at the cost of high energy
consumption. On the other hand, large RPL shared slotframe
size is unable to accommodate RPL control messages during
network bootstrap and when preferred-parent changes occur,
resulting in excessive collisions. In the worst case, this causes
a TSCH node to fail to exchange packets with its time source
(i.e., RPL preferred parent in Orchestra) before a certain
keep-alive timeout, and eventually lose time-synchronization.

Interestingly, we found that the optimal size is different in
two types of Orchestra because they deliver DAOs in different
ways when a node changes its preferred parent. In receiver-
based Orchestra, the node is able to self-calculate the new
parent’s Rx slot based on the parent’s ID, and send a DAO to
the parent. In sender-based Orchestra, however, if the child
node sends a DAO to the new parent through the child’s Tx
slot, the DAO is likely to be lost. This is because the parent
is yet unaware of the new child, thus not listening to the new
child’s Tx slot. To this end, the child node utilizes the RPL
shared slotframe for DAO delivery until its new parent knows
its Tx slot schedule. Consequently, sender-based Orchestra

requires more resources for the RPL shared slotframe than
receiver-based Orchestra. After a series of experiments on
this testbed (figures are omitted for brevity), we set the sizes
of RPL shared slotframes for receiver-based and sender-based
Orchestra to 23 and 11, respectively.

B. EXPERIMENTAL RESULTS
Figure 3 summarizes our results whereM, SB, and RB denote
the 6TiSCH minimal configuration, sender-based Orches-
tra, and receiver-based Orchestra, respectively. The number
shown after each label indicates the (unicast) slotframe size.
Figure 3(a) plots end-to-end packet delivery ratio (PDR) for
both upward and downward traffic. The minimal configu-
ration never achieves perfect PDR even with the shortest
slotframe (i.e., 2) since every slot is shared by all nodes in
the entire network resulting in frequent collisions. Its perfor-
mance becomes even worse as the slotframe size increases.
On the other hand, Orchestra provides significantly better
PDR by dispersing active slots in time using a hash func-
tion in Eq. (2). SB and RB achieve PDR of >99% when
they employ slotframe size less than 17 and 13, respectively.
As the slotframe size increases, however, Orchestra also suf-
fers from lack of communication opportunities.

To analyze the causes of PDR degradation more closely,
Figure 3(b) plots the number of three types of packet losses:
queue loss, link loss, and routing loss. Figure 3(b) shows that
most of the packet losses are due to queue overflow and link
failure, and we observed that most of these losses occur at a
few bottleneck nodes due to the load imbalance problem in
RPL [15]. For example, when RB employed a slotframe size
of 31, 85% of lost packets disappeared at just two bottleneck
nodes.

However, Figure 3(b) also shows that detailed loss patterns
at these bottleneck nodes are different depending on TSCH
scheduling. Note that each node in RB has one Rx slot and
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multiple Tx slots within a unicast slotframe while each node
in SB has one Tx slot and multiple Rx slots. This means
that RB and SB provide fewer Rx and Tx opportunities,
respectively. Accordingly in RB, neighbors of a bottleneck
node contend for a single Rx slot of the bottleneck, which
first leads to many link losses and then queue losses when the
contention becomes more severe (due to redundant CSMA
backoff). On the other hand, SB mainly suffers from queue
losses due to lack of Tx opportunities. As an exception,
SB43 also experiences significant link losses, but most of
these losses (i.e., 98.9%) occur in not the unicast slotframe
but the RPL shared slotframe due to a large number of RPL
control packets attempting to fix unstable routing topology.
The minimal configuration shows numerous link losses since
all nodes contend in one same slot to send packets regardless
of receiver identity.

Figures 3(c) and 3(d) plot network stability and control
overhead in terms of the number of parent changes and the
numbers of DIOs, DAOs, and EBs, respectively. As PDR is
degraded in all the scheduling schemes, the RPL-TSCH net-
work becomes unstable and generates more control packets.
Despite its effort, however, their performance is not restored
since the problem is attributed to how TSCH slots are sched-
uled. Figures 3(b) and 3(c) show that network stability is
closely correlated to link loss. When packets are lost at links
due to collision, RPL misunderstands it as bad link quality
and triggers meaningless parent changes [13].

Figure 3(e) represents average radio duty-cycle of each
scheme. As the slotframe size increases, duty-cycle typically
decreases due to low resource allocation. However, when
the slotframe size becomes too long, duty-cycle rises again
due to more Tx/Rx overhead coming from low PDR. The
minimal configuration provides the lowest PDR among the
three schemes, resulting in the highest energy consumption.
SB consumes more energy than RB due to the two reasons.
Given that, within a slotframe, RB allocates one Rx slot but
SB allocates Rx slots as many as the number of RPL neigh-
bors, i.e., the preferred parent and children, SB uses more
energy for listening. In addition, SB employs a smaller size of
RPL shared slotframe than RB, as discussed in Section III-A,
consuming more energy.

Next, we define the slot utilization ratio (SUR) as the
ratio of Rx slots used for successful packet reception over
total Rx slots, and plot its CDF among nodes in Figure 3(f).
A higher SUR indicates more efficient use of resources and
less redundant energy consumption. In the cases where PDR
is nearly perfect, such as SB5, SB13, RB5, and RB13, they
utilize slots very inefficiently. For example, more than 80%
of nodes experience<1% SUR. This is because, compared to
the given slotframe size, only a few bottleneck nodes receive
a reasonable amount of traffic but most nodes experience
too sparse traffic. If a larger slotframe is used as in RB31,
SUR becomes better but PDR becomes miserable (∼20%)
as shown in Figure 3(a). The minimal configuration cases
exhibit low PDR with low SUR, an undesirable performance
characteristic.

C. SUMMARY
Overall, experimental results strongly support our hypothe-
sis: under static globally-uniform scheduling methods, while
bottleneck nodes suffer from packet losses due to insufficient
opportunities for Tx/Rx, most of other nodes waste energy
due to over-allocated timeslots. The conventional techniques
will suffer even more when each node generates data with
a different rate and/or a node changes its traffic pattern
at run time. For example, in a smart building application,
a temperature or humidity sensor generates light periodic
traffic but an anemometer generates heavy continuous traf-
fic [16]. A node’s application traffic can change at run
time due to emergency detection [18], [24], device control
[25], [26], and firmware update. Evenwith a fixed application
traffic pattern, ‘‘network’’ traffic can still vary at run time
according to a reporting strategy, e.g., sending each data
immediately or aggregating data for a while and sending as a
batch [17]. This motivates TESLA, a technique for dynamic
and local adjustment of slotframe size according to traffic
load.

IV. TESLA DESIGN
In this section, we present our TESLA design. TESLA oper-
ates in conjunction with RPL and receiver-based Orchestra
(i.e., node ID-based Rx slot allocation). Each TESLA node
monitors its incoming traffic load without any additional
control overhead. Based on the traffic load information, each
node periodically adapts its Rx slot schedules. Specifically,
when a node detects overwhelming packets coming through
its current Rx slots, it reduces its slotframe size to alleviate
contention between neighboring nodes for reliable packet
delivery. For energy efficiency, on the other hand, when a
node notices many idle Rx slots, it increases its slotframe size
in order to save energy by avoiding idle listening. In addition,
TESLA attempts to allocate different channel offsets to nodes,
if possible, leading to network capacity increase.

There is a price to pay for this dynamic slot scheduling.
As each node’s Rx schedule varies, its change should be
timely propagated to the RPL neighbors (i.e., preferred parent
and one-hop children) for their Tx schedules. This local
exchange of Rx schedules slightly increases control overhead.
Nevertheless, our intuition is that the gain from slotframe
adjustment is more than enough to compensate the modest
increase in control overhead.

A. SLOTFRAME STRUCTURE
In TESLA, each node has four types of slotframes:
• EB slotframe is for TSCH enhanced beacons (EBs)with
a constant periodicity and a dedicated channel offset.

• RPL shared slotframe is for RPL control packets, also
with a constant periodicity and a dedicated channel
offset.

• Rx slotframe (RSF) is for unicast reception with an
elastic periodicity.

• Tx slotframe (TSF) is for unicast transmission, per
neighbor, with an elastic periodicity.
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The first two slotframes are for control messages similar
to Orchestra [11]. In addition, each TESLA node maintains
a single slotframe only for unicast packet reception, called
Rx slotframe (RSF). There is one Rx slot in each RSF.
In contrast to Orchestra, TESLA enables each node to adjust
its own RSF size dynamically according to incoming traffic
load. Figure 4 shows an example of TESLA scheduling for
the same routing topology as Figure 2. When a large amount
of traffic converges to node 1, it reduces the RSF size for
more Rx opportunities. On the contrary, if node 6 receives few
packets, it enlarges its RSF size to reduce energy consump-
tion. In this way, each node may end up using a different RSF
size.

FIGURE 4. An example of TESLA scheduling.

In addition, a node maintains a Tx slotframe (TSF) for
each of its routing neighbors (i.e., preferred parent and one-
hop children). Each TSF has one Tx slot, which matches the
Rx slot in the RSF of the corresponding routing neighbor.
A node can have a different TSF size for each neighbor
node since each neighbor adjusts its RSF size independently.
Overall, each TESLA node has an EB slotframe, a RPL shared
slotframe, an RSF, and multiple independent TSFs as many
as the number of its routing neighbors.

Inheriting Eq. (2) from Orchestra, the time offset for a
TESLA node’s Rx slot is computed as

offset time(t) = ht (MAC) % Srsf(t). (3)

Differently from Orchestra, the RSF size (Srsf) changes over
time (t) and so does offset time. Note that a node should know
not only a neighbor’s ID but also its up-to-date RSF size to
calculate the neighbor’s Rx schedule and maintain a correct
TSF for the neighbor.

B. Rx SLOTFRAME SIZE ADAPTATION
This section presents how a TESLA node monitors its incom-
ing traffic load and self-adapts its RSF size accordingly.

1) TRAFFIC LOAD REPORTING
TESLA lets each node (i) inform each of its one-hop routing
neighbors (A) of traffic load from node i to node A, namely
L(i,A). Specifically, when node i sends a unicast packet to the
one-hop neighbor A, it piggybacks the traffic load informa-
tion L(i,A) in the packet by using Information Element (IE)

field in the IEEE 802.15.4 frame; the traffic reporting pro-
cess happens locally and requires no additional control
overhead.

Given that the current TSCH scheduling techniques suffer
both link loss and queue loss as discussed in Section III, node
i calculates the traffic load L(i,A) by adding two elements, as

L(i,A) = M (i,A)+ Q(i,A). (4)

Specifically, assuming tupdate(A) as the time elapsed from the
last RSF size update of node A,M (i,A) indicates the number
of node i’s Tx attempts towards node A during tupdate(A).
Node i initializesM (i,A) to 0 upon detecting neighbor node A
changing its RSF size, and increases M (i,A) in every MAC
layer transmission destined for node A regardless of whether
it is acknowledged or not. On the other hand,Q(i,A) is simply
the number of currently queued packets for node Awaiting to
be transmitted, which signifies the current congestion level
experienced by node i towards node A.

2) TWO TRAFFIC LOAD METRICS
Based on the traffic load information reported from all rout-
ing neighbors, each node (A) calculates two complemen-
tary metrics for its periodic RSF adaptation (every Tadapt):
(1) normalized total incoming traffic load, and (2) contention
level.

To this end, we define Llast(i,A) as the L(i,A) at the last
RSF adaptation of nodeA (i.e., before Tadapt). L(i,A) has been
accumulated since node A’s last RSF size change (i.e., during
last tupdate(A), longer than or equal to Tadapt because the
adaptation procedure may not always change the RSF size).
Thus, the traffic load from node i to node A during recent
Tadapt, namely L1(i,A), is

L1(i,A) = L(i,A)− Llast(i,A). (5)

Defining N(A) as the routing neighbor set of node A and W
as the number of node A’s Rx slots in last Tadapt, the nor-
malized total incoming traffic load at node A, L1,n(A), is
computed as

L1,n(A) =
∑
i∈N(A)

L1(i,A)
W

. (6)

Finally, node A uses the metric L1,n(A) for its RSF size
adaptation.

Figure 5 exemplifies RSF size adaptation, where node A
executes RSF adaptation at time 4 · Tadapt to decide the RSF
size for the next period [4 · Tadapt, 5 · Tadapt]. Note that
2 · Tadapt is when node A’s most recent RSF size change
happened. Then,W is the number of Rx slots in [3 ·Tadapt, 4 ·
Tadapt], L(i,A) is the traffic load from node i during tupdate(A)
(i.e., [2 · Tadapt, 4 · Tadapt]), Llast(i,A) is the traffic load in
[2 · Tadapt, 3 · Tadapt], and L1(i,A) indicates the traffic load
during recent Tadapt, i.e., [3 · Tadapt, 4 · Tadapt].

Next, node A estimates the contention level on its Rx slots.
Specifically, node A interprets L1(i,A) as the number of its
Rx slots required to receive node i’s traffic for last Tadapt.
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FIGURE 5. Topology of node A and its RPL routing neighbors, and an
example of RSF size adaptation.

Given that node A has W Rx slots for last Tadapt, the proba-
bility of node i to access an Rx slot of node A is L1(i,A)

W . Node
A estimates packet reception ratio (PRR) from node iwithout
any collision with the other routing neighbors, as

PRRc(i,A) =
∏

k( 6=i)∈N(A)
(1−

L1(k,A)
W

). (7)

Then, node A uses PRRc,min(A), the minimum of PRRc(i,A)
among all i in N(A) (i.e., PRRc(i,A) for the worst-case node),
for its RSF adaption, as the indicator of its contention level.

Note that the two metrics, L1,n(A) and PRRc,min(A), are
mutually complementary. For example, when traffic is heavy
but comes from the only one neighbor node, PRRc,min(A)
is always good (i.e., 1) since there is no contention but
node A may not receive all traffic successfully due to lack
of Rx slots. In this case, L1,n(A) helps node A to detect the
problem. On the other hand, when traffic comes equally from
many neighbor nodes, node A may lose many packets due to
collision even though L1,n(A) is relatively low. In this case,
PRRc,min(A) helps to detect the problem. Overall, by com-
bining the two metrics, each node detects not only the total
incoming traffic load but also how it is distributed to the
routing neighbors.

3) PRIME NUMBERS FOR Rx SLOTFRAME SIZE
When a TESLA node adapts its RSF size, it selects one from
prime numbers excluding the pre-installed sizes for EB and
RPL shared slotframes. There are two reasons for using prime
numbers.

First, according to Eq. (1), Rx slots in consecutive RSFs
(e.g., with ASN = k and ASN = k + Srsf) can use different
channels when the RSF size (Srsf) is a prime number, which
increases frequency diversity. As an example, in Figure 1,
there are four available channels (e.g., IEEE 802.15.4 chan-
nels 15, 20, 25, and 26) and the slotframe size is 3. Based
on Eq. (1), the timeslot (A->B) with channel offset 0 will
select channel numbers 15, 26, 25, and 20 when ASNs are 0,
3, 6, and 9, respectively. Next, as explained in Section IV-A,
a TESLA network has many slotframes with different sizes:
an EB slotframe, an RPL shared slotframe, and many RSFs
(and corresponding TSFs). If all slotframes have lengths of

different prime numbers, they are mutually prime, ensuring
that the active slots overlap each other rarely and evenly.
It prevents unintended synchronization effect. To this end,
each node has an ordered list of prime numbers, P, where the
elements are in ascending order from 2, 3, 5, and so on.

4) TRAFFIC-AWARE Rx SLOTFRAME SIZE ADAPTATION
Based on the aforementioned design, each node executes the
following adaptation procedures every Tadapt:
• Attempt to decrease RSF size, if required (Algorithm 1).
• Otherwise, attempt to increase the size (Algorithm 2).

Algorithm 1 How to Decrease Rx Slotframe (RSF) Size

22 index ← FindIndex(Srsf, P);
44 Wnew← W ;
66 while (PRRc,min(A) < PRRth,low) || (L1,n(A) > Lth) do
88 Srsf,new← P[- -index];

1010 Wnew←
W ·Srsf
Srsf,new

;

1212 Srsf← Srsf,new;

In Algorithm 1, node A first initializes index as that of
the element in the prime number list P, which is equal to
the current RSF size (Srsf). For example, index = 1 when
Srsf = 2 and index = 3 when Srsf = 5. Next,Wnew is defined
as the expected number of Rx slots during next Tadapt with a
new RSF size, and initialized to W , the number of Rx slots
with the current RSF size in last Tadapt. Then in the loop on
line 3, the two traffic load metrics, PRRc,min(A) and L1,n(A),
are calculated using Wnew instead of W .
At the beginning of the loop, node A checks if it is suffering

high incoming traffic by using the two traffic load metrics as
follows:

1) PRRc,min(A) is worse than a lower bound (PRRth,low).
2) L1,n(A) exceeds a threshold (Lth).

Condition (1) is satisfied if any neighbor in N(A) is expected
to suffer from channel contention, and condition (2) is used
as a precaution for sudden traffic increment due to change
of network topology or traffic generation pattern. If at least
one of these two conditions is satisfied, the RSF size needs
to be reduced to give more transmission opportunities for
the neighbors. Therefore, a new RSF size Srsf,new becomes
a one-step smaller prime number than Srsf (line 4). In the
following Tadapt with the new RSF size, node A is expected to
wake up Srsf

Srsf,new
times more. Thus, Wnew goes up accordingly

(line 5), which increases PRRc,min(A) and decreases L1,n(A).
It iterates until neither of the two conditions is satisfied, which
means none of N(A) is expected to suffer from low PRR due
to contention, and the number of Rx slots is enough to cope
with traffic variation.

Algorithm 2 is executedwhen the RSF size is not decreased
by Algorithm 1. The two algorithms are similar in structure,
but their conditions for the RSF size update are different.
In Algorithm 2, an RSF size increases if both of the following
conditions are satisfied.
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Algorithm 2 How to Increase Rx Slotframe (RSF) Size

22 index ← FindIndex(Srsf, P);
44 Wnew← W ;
66 while (PRRc,min(A) > PRRth,up) && (L1,n(A) < Lth) do
88 Srsf,new← P[++ index];

1010 Wnew←
W ·Srsf
Srsf,new

;

1212 if Srsf,newSrsf
> ε then

1414 break;

1616 Srsf← Srsf,new;

1) PRRc,min(A) is better than an upper bound (PRRth,up).
2) L1,n(A) is less than the threshold (Lth).

In other words, if PRRc(i,A) for all i inN(A) are high enough
and the number of Rx slots is sufficient to accommodate
all traffic from the neighbors, node A increases the RSF
size to reduce idle Rx slots. Note that Algorithm 2 uses
another threshold PRRth,up, higher than PRRth,low used in
Algorithm 1. Having double thresholds improves stability
by preventing the ping-pong effect (repetition of increas-
ing/decreasing the RSF size too frequently).

To prioritize high reliability over energy saving, we design
TESLA to increase RSF size conservatively by introducing a
bounding factor ε. Specifically, if the ratio of Srsf,new to Srsf
exceeds ε, it breaks the loop and stops increasing the RSF size
(lines 6 and 7).

C. Tx SLOTFRAME SIZE ADAPTATION
If a node ends up changing its RSF size through the periodic
RSF adaptation, it announces the new RSF size to its routing
neighbors, then each of which modifies its TSF size for the
node.

1) LOCAL UPDATE OF THE Rx SLOTFRAME SIZE
Reliable delivery of an updated RSF size to routing neigh-
bors is critical to TESLA’s robust operation; if a neighbor is
unaware of the RSF size change, it may continuously fail to
deliver packets to the node due to schedule mismatch. To this
end, node A delivers the new RSF size and its version num-
ber2 through DAO, DIO, EB, and Enhanced ACK (EACK)3

packets using reserved fields of DAO and DIO, and IEEE
802.15.4 header IE for EB and EACK. Neighbor nodes are
informed of node A’s up-to-date RSF size whenever receiving
these packets. DAO updates the preferred parent, DIO and EB
update all neighbors of node A simultaneously, and EACK
updates any node which transmits a unicast packet to node A.
Announcing the RSF size relying solely on existing traffic

incurs no additional control overhead but may not provide
timely update. For immediate RSF size update, node A trans-
mits an additional DAO (for the preferred parent) and an

2 The version number increases by one whenever the RSF size changes.
3In TSCH, IEEE 802.15.4 EACK is used normally with timing informa-

tion embedded.

EB (for the one-hop children) right after changing its RSF
size, if they are not already scheduled. This greatly improves
robustness with slightly more control overhead.

However, both of these messages may be lost, especially
the EB which is broadcasted without ARQ. To address this
problem, TESLA has two backup mechanisms. (1) After
nodeA changes its RSF size, it does not eliminate the previous
RSF but temporarily maintains it together with the new RSF.
When an outdated neighbor successfully sends a packet in
node A’s temporary RSF, it is updated by receiving an EACK
from node A. (2) If a neighbor node fails to receive the new
RSF size even until the temporary double RSF schedule ends,
it will continuously fail to transmit unicast packets to node A.
In this case, the neighbor suspects schedule mismatch, sends
packets destined for node A through the RPL shared slot-
frame, and is updated by receiving an EACK from node A.

2) Tx SLOTFRAME UPDATE
When a node notices an update of a neighbor’s RSF size
by comparing the versions, it changes the periodicity and
time offset of corresponding TSF. Sometimes, Tx slots of
two TSFs, each of which is allocated for a different neighbor,
may overlap unfortunately. In this case, TESLA compares the
lengths of Tx queues for the two neighbors, and prioritizes
the transmission for the neighbor with more queued packets.

D. MULTI-CHANNEL OPERATION
Although TESLA is designed to avoid schedule overlap
between neighbors by using prime numbers for RSF size,
overlaps may occur inevitably, especially under extremely
heavy traffic. This is because bottleneck nodes end up using
very small RSF sizes, increasing probability of timeslot over-
lap. For example, assume that a bottleneck node (B) reduces
its RSF size to the minimum prime number (i.e., 2). Then, any
transmission in the vicinity of node B, not destined to node B,
can collide with a packet towards B with a probability of up
to 50%.

To enlarge network capacity, TESLA utilizesmultiple chan-
nels for unicast slotframes. Specifically, the channel offset of
a node’s RSF is computed as,

offsetchannel = hc(MAC) % (NListc − 2). (8)

Note that offsetchannel uses a modulo operator with NListc −2,
instead ofNListc , since we dedicate two channel offsets for the
EB and RPL shared slotframes not to hinder the basic TSCH
and RPL operations. For example, when there are 16 chan-
nels available (max. number of channels in IEEE 802.15.4),
TESLA can allocate 14 channels for unicast communications.
Since each node is likely to use a different Rx channel, colli-
sion between packets for different receivers occurs rarely and
temporarily in TESLA, only when traffic load is very high and
both timeslot and channel offset schedules are overlapped.

E. COLLABORATION WITH RPL
A practical embedded network is typically designed as a
vertical silo where multiple layers intimately collaborate
[11], [21]. To this end, we discuss how TESLA jointly operates
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FIGURE 6. A snapshot of RPL topology for 110 nodes with −17 dBm of Tx power on FIT/IoT-LAB testbed in Lille.

with RPL when routing topology changes. TESLA maintains
the RSF size information of only current routing neighbors.
When a node switches its preferred parent, it does not have
the new parent’s RSF information and neither does the parent.
The new child and new parent should know each other’s RSF
size for unicast communication.

In this case, the node’s RPL layer schedules a DAO for the
new parent, and its TESLA layer sends the DAO (including
its RSF size) on the RPL shared slotframe and finds out the
parent’s RSF information by receiving an EACK.Meanwhile,
the new parent detects the addition of a new child by receiving
the DAO. Its RPL layer establishes a new downward route
for the child and its TESLA layer installs a TSF for the child
using the RSF information included in the DAO. On the other
hand, the old parent removes both the route and TSF for the
previous child after receiving a No-path DAO from the child
(scheduled by RPL) or the expiration of the route.

WhenRPL’s routing topology is unstable or being repaired,
e.g., when the network bootstraps or wireless environments
change significantly, many nodes change their parents simul-
taneously and it is difficult to exchange RSF sizes through
DAO and EACK. In this case, however, since each node’s
RPL layer generates many DIO packets due to Trickle re-
initialization [27], most nodes are able to know routing neigh-
bors’ RSF sizes quickly by receiving their DIOs.When a node
receives a DIO from its new parent quickly, it sends a DAO
on the parent’s RSF instead of the RPL shared slotframe. This
synergistic joint operation enables TESLA to maintain modest
contention on the RPL shared slotframe.

V. PERFORMANCE EVALUATION
In this section, we evaluate TESLA on real world testbeds
with various topologies. We compare TESLA against state-
of-the-art TSCH schedules. We also examine the adaptability
of TESLA to dynamics of network traffic. Lastly, the impact
of parameter setting is discussed.

A. METHODOLOGY AND EXPERIMENT SETUP
We implement TESLA on ContikiOS and compare it
against 6TiSCH minimal scheduling (M ), sender-based
Orchestra (SB), and receiver-based Orchestra (RB), using
110 and 79 nodes on the FIT/IoT-LAB testbeds [23] in Lille
and Grenoble, France, respectively. Each node features a
32-bit ARM Cortex-M3 microcontroller (STM32F103REY)

and an AT86RF231 IEEE 802.15.4 radio chip. This node is
representative of today’s state-of-the art IoT devices [23].
We use Contiki-RPL implementation on top of the TSCH
scheduling schemes. For Orchestra and TESLA, the length
of EB slotframe is 397. As discussed in Section III,
the size of RPL shared slotframe for sender-based Orches-
tra is 11, and that for receiver-based Orchestra is 23. The
size of RPL shared slotframe for TESLA is also 23, since
TESLA exchanges most of DAOs in unicast slotframe as
explained in Section IV-E.

All protocols use a maximum of 8 retransmissions per hop,
and queue size of 16 packets. TSCH hops over four best
channels: 15, 20, 25, and 26. Each instance of an experiment
lasts for 1 hour, and results are averaged over 3∼5 runs of
experiments for each case. An error bar represents 95% con-
fidence interval. In all experiments, the application payload
is 59 bytes carried in UDP/IPv6 datagrams over 6LoWPAN,
reaching 109 bytes of the data frame size.

For TESLA, we use RSF adaptation period Tadapt of 15 sec-
onds, and limitation factor ε is set to 1.5 to increase RSF
size conservatively. In other words, RSF size cannot increase
by more than 50% every Tadapt. The load threshold Lth is
50%, and PRRth,low and PRRth,up are 80% and 90%, respec-
tively. The prime numbers for RSF size adaptation range
from 2 to 97, allowing a node to wake up at least once
in 1 second. To distinguish the effect of multi-channel oper-
ation in TESLA, we create two versions of TESLA: T_S uses
a single channel offset for RSF/TSF, and T_M uses two
channel offsets (excluding two offsets dedicated for EB and
RPL shared slotframes).

B. IMPACT OF TRAFFIC LOAD
We first investigate the performance of the state-of-the-art
TSCH schedules and TESLA with various traffic intensities
on Lille testbed consisting of 110 nodes. We use slotframe
size of 2 for the minimal configuration which had the highest
PDR in Section III. Both receiver/sender-based Orchestra use
a unicast slotframe size of 13. Each node uses transmission
power of −17 dBm. Figure 6 shows a snapshot of the RPL
routing topology during experiments where average depth of
the network is 4.7 hops, and its maximum reaches 7 hops.
In each experiment, the root node (i.e., node 1) generates
downward packets with a fixed rate while altering destina-
tions. For upward packets, an equal aggregate rate is used
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FIGURE 7. Various experimental results according to different traffic load.

for 109 sensor nodes. For instance, when the root gener-
ates 2 downward packets per second, each of 109 non-root
nodes generates upward packets with 0.018 (=2/109) packets
per second.

1) RELIABILITY
Figure 7(a) shows the average bidirectional end-to-end PDR
under different traffic load. Under light traffic, all the pro-
tocols perform well with PDR over 99%. However, when the
traffic load from/to the root is 2 or 3.3 packets/second,M, RB,
and SB start to show performance degradation. On the other
hand, TESLA is still capable of accommodating traffic by
reducing slotframe sizes adaptively. For example, Figure 7(g)
presents a snapshot of RSF size of each node when traffic rate
is 2 packets/second. It shows that bottleneck nodes marked
with yellow color in Figure 6 use much smaller RSF sizes
than the other nodes to resolve contention. Figure 7(a) also
shows that T_M improves PDR of T_S by up to 30.1%

As presented in Figure 7(d), M and RB experience consid-
erable link losses since multiple nodes contend for an active
slot, which is aggravated more in the vicinity of bottlenecks.
Meanwhile, bottlenecks in SB suffer from frequent queue
overflows due to its fewer Tx slots than Rx slots. In TESLA,
however, bottlenecks can reduce its Rx slotframe size to the
minimum (i.e., 2), resulting in much less packet losses. When
the traffic increases more, TESLA also encounters channel

contention and packet losses, which is still less than those in
other schemes. The results confirm that TESLA successfully
does its role at the link layer: rescuing bottleneck nodes from
the contention hell, as much as possible.

2) ENERGY CONSUMPTION
Figure 7(b) shows the duty-cycle for each protocol.
Obviously, when the traffic load increases, more energy is
used to transmit and receive packets.M2 consumes the largest
energy due to its short periodicity of slotframe and severe
contention. Orchestra has duty-cycles from 1.3% to 7.0%.
Under low traffic load, SB spends more energy than RB by
allocating multiple Rx slots within a slotframe. However, RB
with one Rx slot within a slotframe experiences more con-
tention than SB, bringing about higher duty-cycles than SB as
traffic intensifies. TESLA significantly improves uponM,RB,
and SB, maintaining duty-cycle from 0.8% to 1.6%. T_M has
slightly lower duty-cycle than T_S since it reduces channel
contention thanks through channel diversity. Compared to SB
which showed the best PDR except TESLA in Figure 7(a),
T_M reduces duty-cycle by 67.1% on average.
Figure 7(f) plots the distribution of duty-cycles among

all 110 nodes for traffic load of 2 packets/second. At this
traffic rate, RB13 outperforms M2 and SB13 as illustrated in
Figure 7(b), but TESLA performs even better, enabling more
than 90% of nodes to save their energy by 50% compared
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FIGURE 8. Impact of transmission power.

to RB13. It is important to note that TESLA achieves energy
saving without loss of reliability by increasing the RSF sizes
only for the nodes with over-allocated slots. Figure 7(g)
confirms this: while most nodes utilize the maximum RSF
size (i.e., 97) for energy saving, a few bottleneck nodes use
very small RSF sizes. In Figure 7(f), TESLA does increase
the duty-cycles of <5% bottleneck nodes compared to RB13,
because they select RSF sizes shorter than 13 as shown
in Figure 7(g).

Interestingly, RB13 also achieved perfect reliability under
the same traffic load, which means that RSF size of 13 is
sufficient to handle the traffic even for bottlenecks. The
reason why TESLA causes the bottleneck nodes to use RSF
sizes less than 13 is its sensitive reaction to the contention:
decreasing RSF size promptly when a burst of traffic is
temporarily observed. Even if each node generates traffic
with a fixed rate, the incoming traffic load of each node,
especially bottleneck nodes, fluctuates due to randomness in
the network such as channel quality and topology changes.
As TESLA prioritizes reliability over energy efficiency, a
few bottleneck nodes sacrifice their energy by using RSF
sizes slightly shorter than actually needed, aiming for reliable
packet delivery under network dynamics. We argue that this
design choice is reasonable because sacrificing reliability can
ruin the whole network.

3) END-TO-END LATENCY
Figure 7(c) presents the average end-to-end latency for
upward and downward traffic. When the traffic load is low,
TESLA exhibits the longest delay, since most nodes use
the maximum RSF size. Note that TESLA is designed for
reliability and energy efficiency, rather than short latency.
Interestingly, however, as the traffic load increases to
3.3 packets/second, the latency of TESLA decreases because
RSF size is reduced throughout the network, while those
of the other schemes increase due to channel contention.
Eventually, beyond traffic load of 3.3 packets/second,
TESLA provides the shortest delaywith the best reliability and
energy-efficiency. As an exceptional case, under the highest
traffic load, it seems that the minimal configuration shows
shorter delay than TESLA, but this is because only nodes
with 1 or 2 hops away from the root can successfully deliver
packets (i.e., ∼30% PDR). Overall, although TESLA is not
explicitly designed for latency improvement, its contention
alleviation ends up with better latency.

4) NETWORK OVERHEAD
When a TESLA node changes its RSF size, it can generate
additional DAO and EB packets in order to fast notify the
new RSF size to the preferred parent and 1-hop children,
as described in Section IV-C.1. Figure 7(e) presents DIO,
DAO, and EB overhead. In the lowest traffic load case, T_M
makes 27.2% and 16.1% increments of DAO and EB packets,
compared to RB13. Nevertheless, it does not impede TESLA’s
reliability as shown in Figure 7(a). In addition, this control
overhead increase is more than compensated by TESLA’s sub-
stantial energy saving via reducing idle listening, which leads
to significant duty-cycle improvement shown in Figure 7(b).
Figure 7(e) also reveals that as the traffic increases, Orchestra
and the minimal schedule incur more network overhead than
TESLA to restore the network that has become unstable due
to lack of reliable packet delivery. This also confirms why
TESLA’s design choice, prioritizing reliability over energy
efficiency, makes sense.

C. IMPACT OF NETWORK TOPOLOGY
Now, we run experiments extensively with various network
topologies. We first change Tx power of each node to investi-
gate the impact of node density. Then, we change the location
of the root to give drastic variation in the topology. Lastly,
we run experiments in an entirely different environment,
79 nodes on Grenoble testbed.

1) DIFFERENT Tx POWER
In this experiment, we vary Tx power from the mini-
mum (−17 dBm) to the maximum (3 dBm) value. We set
traffic load to 6.7 packets/second, the highest load used
in Section V-B anticipating that higher Tx power will result
in better performance, and compare TESLA with M2, RB7,
RB13, SB13, and SB23.

Figure 8 plots end-to-end PDR, duty-cycle of radio,
and average hop distance of RPL topology. As Tx power
increases, Figure 8(a) shows that all the schemes except
RB13 provide better PDR and Figure 8(b) shows that all
the schemes provide lower radio duty-cycle. There are two
reasons for this result. Firstly, a higher Tx power decreases
average hop distance as shown in Figure 8(c), which reduces
network traffic since a packet can be delivered to its des-
tination with fewer transmissions. This alleviates the level
of contention. Secondly, a higher Tx power increases node
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FIGURE 9. Impact of root location.

density and provides more parent candidates for each node.
Thus, each node can have a better chance to avoid choosing
a bottleneck node as the preferred parent.

On the other hand, RB13’s PDR performance shows a
trade-off regarding Tx power increase: although lower net-
work traffic can reduce contention, higher node density
can cause more contention due to more nearby contenders.
In RB13, the latter effect becomes stronger than the former
when Tx power is higher than -4 dBm, resulting in PDR
degradation. Note that RB7 escapes from the negative effect
by using a shorter slotframe size, showing monotonic PDR
increase with Tx power but more duty-cycle than RB13.
SB usually experiences less contention than RB, providing
better PDR than RB. Meanwhile, SB13 always provides bet-
ter PDR but worse duty-cycle than SB23 due to its shorter
slotframe size. Lastly, regardless of Tx power, TESLA out-
performs the others considerably in terms of both reliability
and energy efficiency.

2) DIFFERENT POSITIONS OF THE ROOT
Here, we change the root location to create a totally different
topology. In addition to the default root location of all the
previous experiments, we also used a node at corner/center
of the testbed as the root. We set Tx power to -17 dBm and
aggregate traffic rate from/to the root to 1.4 packets/second,
a rate at which M2 maintained >99% PDR in Section V-B.
In this experiment, TESLA is compared withM2, RB7, RB13,
SB7, and SB13, and the results are shown in Figures 9(a)
through 9(c).

Whenwe use the center and default as the root positions, all
the schemes achieve >99% PDR, but TESLA improves energy
efficiency remarkably. For the case of corner root, as hop dis-
tance becomes longer and network traffic increases, PDR and
duty-cycle performance drops in the minimal schedule and
Orchestra. However, TESLA still maintains perfect reliability
with the lowest energy consumption through slotframe size
adaptation.

3) DIFFERENT TESTBEDS
We now compare TESLA with M2, RB7, RB13, RB31, SB7,
SB13, and SB31 in a different environment: 79 nodes on the
Grenoble testbed, which are deployed uniformly in a long
linear topology with two lines. We use total traffic load of
2 packets/second for each of bidirectional traffic, and Tx
power of −17 dBm.

FIGURE 10. Results on the 79-node IoT-LAB Grenoble testbed.

The experiment results are summarized in Figure 10(a).
Compared to Figure 6, the routing topology of Grenoble
testbed illustrated in Figure 10(a) is evenly spread out due
to its linear deployment. However, there are still bottlenecks
depicted as yellow-colored nodes. As two main performance
metrics, Figure 10(b) plots upward and downward PDR, and
Figure 10(c) plots radio duty-cycle. By adaptively controlling
RSF sizes as illustrated in Figure 10(d), TESLA shows the best
performance in both aspects. Specifically, Figure 10(d) and
Figure 7(g) show that TESLA uses more diverse RSF sizes
on the Grenoble testbed than the Lille testbed. This confirms
that TESLA does reflect the different routing topology on
the Grenoble testbed, more balanced than that on the Lille
testbed.

In Sections V-B and V-C so far, we have extensively eval-
uated the performance of TESLA against the state-of-the-
arts with various slotframe sizes. We found that the optimal
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slotframe size for each of compared schemes differs accord-
ing to the traffic load and network topology. It is notable,
however, that we have never adjusted any of TESLA’s default
parameters (explained in SectionV-A), but TESLA has always
presented the best performances nevertheless.

D. IMPACT OF RUN-TIME TRAFFIC DYNAMICS
To closely understand TESLA’s adaptability to traffic dynam-
ics of the network at the link level, we run another experiment
with a single-hop topology having five senders and a common
receiver. In this experiment, each sender generates packets
with two different traffic loads, 0.2 and 1 packet/second.
The experiment comprises four 20-minute periods, and each
sender uses the two traffic rates alternately within each
period. The intervals for traffic load alternation in the four
periods are 5 minutes, 1 minute, 15 seconds, and 5 seconds.
This load change is shown explicitly in Figure 11.

FIGURE 11. Time vs. Rx slotframe size.

Figure 11 also plots how TESLA adjusts the receiver’s RSF
size under the traffic load dynamics. Recall that we used the
RSF adaptation period, Tadapt, of 15 seconds. The first two
periods have larger intervals (i.e., 5 min. and 1 min.) of traffic
alternation than Tadapt, sufficient to adapt RSF size according
to the changed traffic load. While the RSF size gradually
reaches 17 when the traffic load is low, it is reduced down
to 3 immediately when the traffic load becomes high. During
the third and fourth periods, however, the traffic load changes
faster than the RSF adaptation rate. Therefore, the estimated
traffic load is always averaged through the two different traf-
fic loads, and thus the range of RSF size variation declines.
For example, it fluctuates only between 5 and 7 in the fourth
period.

Nevertheless, PDR of each period is maintained above
99.9% with reasonable expected transmission counts (ETX)
as indicated in Figure 11. This proves that even when traffic
load varies fast, TESLA does its best to adjust RSF size
according to the average traffic load, maintaining reliability.
Prioritizing reliability over energy efficiency is important at
this point again.

E. IMPACT OF TESLA PARAMETERS
Lastly, we evaluate slot utilization ratio (SUR) of TESLAwith
the traffic load of 2 packets/second from/to the root, while
changing the TESLA parameters. We compare that with
Orchestra and the minimal configuration. From Figure 3(a)

which used the same traffic load, we chose a common slot-
frame size ‘13’ for sender-based and receiver-based Orches-
tra, which achieves >99% reliability for both, and a slotframe
size ‘2’ for the minimal schedule, which provides the highest
PDR. We evaluate TESLA with different pairs of (PRRth,low,
PRRth,up) and different RSF size upper bounds. For instance,
T-(80%,90%)-200 indicates TESLA with 80% of PRRth,low,
90% of PRRth,up, and the upper bound of 200.

FIGURE 12. Slot utilization ratio with different PRR thresholds and upper
bound of slotframe lengths.

Figure 12 plots the SUR distribution of M2, RB13, SB13.
In Orchestra and the minimal schedule, 80% of nodes
show <1% SUR, most of which are leaf nodes wasting
energy excessively in unnecessary Rx slots. On the con-
trary, TESLA improves their SURs, more when a larger RSF
size upper bound is used. When the upper bound is 400,
TESLA provides SUR from 5% to 12% for the 80% nodes.
This result reveals that using a large maximum RSF size
improves the group of nodes with low SUR (i.e., leaf nodes).
However, nodes with an excessively large RSF size cannot
react to network dynamics promptly due to few wake-ups,
degrading reliability. For example, upward and downward
PDRs of T-(80%,90%)-400 are 93.0% and 95.9%, respec-
tively, while T-(80%,90%)-100 achieves >99% for both.
In addition, energy saving by using a large maximum RSF
size is marginal since the RPL shared slotframe accounts for
most of energy consumption in nodes with large RSF sizes.

On the other hand, PRRth,low and PRRth,up affect the bot-
tleneck nodes with high SUR. With lower PRR thresholds,
TESLA is reluctant to reduce RSF size under heavy traffic,
resulting in higher SUR. However, we found TESLAwith low
PRRth,low and PRRth,up underperforms in terms of reliability,
since it does not resolve poor link-layer PRR. Based on
the results, we have used T-(80%,90%)-100 as our default
configuration for all the previous experiments.

VI. RELATED WORK
Numerous duty-cycling MACs have been proposed for
LLNs. Among those, asynchronous approaches [5]–[7], [19],
[28], [29] have the advantage of neither requiring strict time-
synchronization on resource-constrained devices, nor relying
critically on certain parameter configurations. With technical
progress, however, synchronized communication became a
viable option [8], such as TSCH, which opens the schedul-
ing problem. Below we summarize prior work on TSCH
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scheduling other than that already presented in Section II,
which is categorized into centralized and decentralized
approaches.

A. CENTRALIZED TSCH SCHEDULING
Centralized scheduling is often employed in industrial scenar-
ios [30]–[32] where algorithms are built in and maintained
by a central controller. TASA [33] is a centralized traffic
aware scheduling algorithm using graph theory methods of
matching and coloring. TASA builds the schedule based on
traffic load offered by each source node, and allocates times-
lots and channel offsets based on network topology in order to
maximize parallel transmissions. Palattella et al. [34] and [35]
have also derived fundamental bounds on the minimum
number of slots achievable with TASA for a given topology.
Overlooking practical challenges in LLNs, however,
it showed high loss rate or high duty-cycle on a real multihop
testbed evaluation [36].

AMUS [37] is a centralized adaptive scheduling scheme
which gives more Tx slots to nodes that are closer to the
sink assuming that those nodes have more traffic to forward.
However, it does not consider traffic load, routing topology
(other than hop distance), nor link quality, resulting in ineffi-
cient allocation.

In [38], retransmission slots are added and shared accord-
ing to reliability and delay constraints. However, it does not
handle the side effect: collisions and excessive idle listening.

For high data rate scenarios, Elsts et al. [39] proposed a
hybrid approach where dedicated and shared slots coexist in
the same schedule. However, they assume that the number of
channels used in the network is greater than the number of
forwarding nodes, which is unrealistic in a channel-resource
limited network. In addition, all nodes are forced to wake up
at every timeslot, disregarding low-power operation.

In centralized link scheduling (CLS) [40], the sink reserves
slots for a newly joining node at every node along the path to
that node. When a node changes its preferred parent, it sends
a removal request to the sink, de-allocating the slots in each
intermediate hop. However, it requires an end-to-end mul-
tihop signaling phase, resulting in massive communication
overhead.

B. DISTRIBUTED TSCH SCHEDULING
The goal of distributed schemes is to adapt to dynamic topol-
ogy and traffic load changes efficiently without the signaling
overhead to a central controller. For example, in local lock-
based algorithms [41]–[44], each node selects and reserves a
timeslot not used by nearby interfering nodes. By announcing
this reservation locally, the timeslot is locked for the node
solely. However, notifying the reservation to the interfering
nodes selectively is a complicated task in practice. Besides,
none of these works addressed the reservation overlapping
problem.

Vallati et al. [45] improves the 6TiSCH minimal schedule
by allocating shared slots dynamically. However, it still uses

shared slots only, like the minimal configuration, thus suffer-
ing severe packet collisions and redundant overhearing.

6TiSCH defines SF0 [46], a minimal scheduling function
using 6top protocol (6P) [47]. It estimates the number of slots
required between two neighbors, and lets them know when
to add or delete slots. However, it does not define which
timeslots they should reallocate. Based on SF0, LLFS [48]
daisy-chains the timeslots in a multi-hop path to reduce end-
to-end latency. However, slot reallocation by SF0 occurs
between every neighbor, incurring significant overhead for
6P negotiation such as 6P Request/Response messages.

DeTAS [49] is a decentralized version of TASA. InDeTAS,
a node collects bandwidth requests from its children, adds
them with its own bandwidth, and then forwards it to its
parent recursively. Then, slot allocation starts from the sink.
To reduce end-to-end delay and queue overflows, DeTAS
schedules alternatively Rx/Tx slots along the path to the sink.
However, if a packet is lost due to poor link quality, all the
subsequent slots scheduled are wasted.

Some scheduling proposals [50]–[53] allocate times-
lots randomly. Then, using local information, nodes detect
schedule collision between two interfering radio links and
re-allocate the colliding slots. These works may handle traffic
dynamics but have only been evaluated on small-scale low-
density deployments. Higher density limits the available slots
due to a large number of interfering nodes, and as a result,
communication overhead increases substantially since more
negotiation procedures are needed [32].

C. WHY TESLA?
Both centralized and decentralized approaches have not
shown robust operation in real LLNs, which is the reason why
Orchestra [11], an autonomous scheduling mechanism has
been the state-of-the-art. Autonomous scheduling, however,
significantly sacrifices flexibility to avoid any additional con-
trol overhead, operating inefficiently in dynamic LLN envi-
ronments. TESLA’s novelty is that it operates on autonomous
scheduling, but adds the flavor of distributed scheduling
slightly and very carefully to fully realize TSCH’s potential.
The careful combination makes TESLA robust as autonomous
scheduling and flexible as distributed scheduling.

VII. CONCLUSION
We introduced TESLA, a dynamic scheduling solution for
TSCH. In TESLA, each node adapts its Rx schedule with traf-
fic awareness to improve energy efficiency while guarantee-
ing reliability. TESLA also aims to increase network capacity
by using multiple channels. We implemented TESLA on a
low-power embedded platform using ContikiOS, and eval-
uated it through extensive experiments on two large-scale
multihop testbeds consisting of 110 and 79 low-power
IEEE 802.15.4 devices. Consequently, we have shown that
TESLA improves the state-of-the-arts with respect to both
reliability and energy efficiency in any experimental envi-
ronment and topology. We also demonstrated TESLA’s adapt-
ability to traffic dynamics. As future work, we plan to design
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a dynamic TSCH scheduling for broadcast packets as well,
which, collaborated with TESLA, can complete fully adaptive
scheduling for all types of traffic.
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