
Received April 1, 2019, accepted April 26, 2019, date of publication April 30, 2019, date of current version May 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914098

Nodes in the Bitcoin Network: Comparative
Measurement Study and Survey
SEHYUN PARK, SEONGWON IM, YOUHWAN SEOL,
AND JEONGYEUP PAEK , (Senior Member, IEEE)
School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Jeongyeup Paek (jpaek@cau.ac.kr)

This work was supported in part by the Chung-Ang University Research Grants and in part by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant NRF-2017R1D1A1B03031348.

ABSTRACT Bitcoin is a decentralized digital currency that has gained significant attention and growth in
recent years. Unlike traditional currencies, Bitcoin does not rely on a centralized authority to control the
supply, distribution, and verification of the validity of transactions. Instead, Bitcoin relies on a peer-to-peer
(P2P) network of volunteers to distribute pending transactions and confirmed blocks, to verify transactions,
and to collectively implement a replicated ledger that everyone agrees on. This P2P network is at the heart
of Bitcoin and many other blockchain technologies. In this paper, we present a comparative measurement
study of nodes in the Bitcoin network. We measure and analyze how many the so-called ‘‘volunteers’’
are in the Bitcoin P2P network by scanning the live Bitcoin network for 37 days in 2018 and compare
them with the data reported by prior work in 2013∼2016. This paper is motivated by the fact that Bitcoin
has experienced explosive growth in terms of a number of users, transactions, value, and interest over a
recent couple of years. Our investigation includes the IP addresses of Bitcoin nodes, size of the network,
power law in the geographic distribution, protocol, and client versions, and network latencies and shows
how today’s network is different from early days. In addition, based on the observations made from the
measurement study, we propose a simple distance-based peer selection rule for improved connectivity and
faster data propagation. The evaluation results show that our proposed lightweight and backward-compatible
peer selection rule has the potential to reduce data dissemination latency.

INDEX TERMS Bitcoin, peer-to-peer network, blockchain, peer selection, network measurement.

I. INTRODUCTION
Bitcoin is a decentralized digital currency proposed in 2008 in
a paper authored by someone behind the Satoshi Nakamoto
pseudonym [1]. Since then, it has reached a level of adop-
tion unrealized by decades of previously proposed digital
currencies [2]–[4]. Unlike most previous proposals, Bitcoin
does not distribute digital monetary units to users. Instead,
a public ledger (called the blockchain) maintains a list of
every transaction made by all Bitcoin users since the deploy-
ment of the currency in January 2009 when it became fully
functional.

Bitcoin network is an overlay network built upon peer-to-
peer broadcasts1 which carries all information in the network.
Through broadcasts, network achieves eventual consensus

The associate editor coordinating the review of this manuscript and
approving it for publication was Kaiping Xue.

1Peer-to-peer broadcasts are conceptual at the application layer, and is
actually implemented as multiple TCP unicasts in the underlying Internet.

and information consistency. Generated transactions are con-
tinually propagated to neighbor nodes to induce updates, and
the block which contains several confirmed transactions are
also created and propagated to the entire network. There are
a number of nodes distributed all over the world (as we will
show in Section IV) who, in a voluntary way or for profit,
participate to the network.

At the beginning, Bitcoin network was designed and has
evolved with rules based on the ‘‘one CPU, one vote’’ phi-
losophy which proposed a democratic world-view. Therefore
individual users often connected directly to the Bitcoin P2P
network. However, as Bitcoin became popular and finan-
cially significant, block creating has become the domain of
specialized miners. Some miners may run their customized
mining client or use special-purpose hardware (e.g. ASIC)
in an attempt to have an advantage over other clients [5].
Miners around the world may also organize into ‘‘mining
pools’’, often hiding behind small number of gateway nodes.

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57009

https://orcid.org/0000-0001-5177-4936

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 1. Average number of confirmed transactions per day, and
average market price of 1 BTC (in USD) for each year. There has been an
explosive growth in recent 2 years (Data from
https://blockchain.com/explorer).

In addition, exponential growth of transactions is leading to
overload of the network because the block size that needs
to be processed has reached the originally anticipated limit.
These changes inevitably leads to changes in the network
topology.

Since the problems that these changes may bring are
real-time and serious (in particular, financially), a lot of
research and discussions among the community are under-
way (Section VI). For example, the ‘decloaking’ technique
revealed the topology changes and its problems [6], and
Decker et al. investigated the impact of information prop-
agation delay on ledger consistency [7]. The work in [8]
presented quantitative aspects of various information in the
network, and Donet et al. took snapshots of a Bitcoin network
once a day for 37 days to present the number of partic-
ipants and their geographical distribution [9]. These prior
work in 2013∼2015 has allowed better understanding of the
Bitcoin network.

However, although unsure whether it is simply mere spec-
ulation or due to the true potential of blockchain technology,
Bitcoin has experienced explosive growth in terms of number
of users, transactions, value, and interest over the recent
couple years. Figure 1 shows the increase in both the aver-
age number of confirmed transactions per day and average
market price of 1 BTC, averaged over each year. For instance,
the average market value of 1 BTC in 2015 was $271.83 USD
(max $458.95), but has increased to $3962.38 in 2017,
an order of magnitude (14.57×) greater. If we compare the
starting value of 1 BTC in 2013 ($13.48) with the maximum
market value of $19289.79 achieved in 2017, it is a 1430×
increase. It can surely be said as an ‘explosive’ increase.

Our work is motivated by this explosive growth over the
recent couple years. In this work, we present a comparative
measurement study of nodes in the Bitcoin network. We
measure and analyze how many so-called ‘volunteers’ are in
Bitcoin P2P network by scanning the live Bitcoin network
for 37 days in 2018, and compare them with data reported by
prior works in 2013∼2016. Our investigation includes the IP
addresses of Bitcoin nodes, size of the network, geographic
distribution, protocol and client versions, network latencies,

and more to show how today’s network is different from
early days. In addition, based on the observations made from
the measurement study, we propose a simple distance-based
peer selection rule for improved connectivity and faster
data propagation. Simulation results show that our proposed
light-weight and backward-compatible peer selection rule has
potential to reduce data dissemination latency.

The remainder of this paper is structured as follows. We
first provide a brief overview of Bitcoin and its P2P network
in Section II. Then in Section III, we describe the design and
implementation of our BITCOIN-NODE-SCANNER which
we use to collect data in the live Bitcoin network. Section IV
presents our measurement results and comparative analysis,
and we propose a simple distance-based peer selection rule
for improved connectivity and faster data propagation in
Section V. Section VI discusses the related work, and we
conclude the paper in Section VII.

II. BACKGROUND - BITCOIN
In this section, we provide a brief background of Bitcoin
and its blockchain [1]. We present a high-level overview,
along with some details only on those that are relevant to our
work. Since Bitcoin clients are open source and each node
may customize their software for their own purposes, our
descriptions are that of the reference/default implementation
(Satoshi client). For more comprehensive description, please
refer to the original Bitcoin paper [1], or other related work
in Section VI [4], [7]–[14].

A. BLOCKCHAIN
Bitcoin aims to achieve complete decentralization, and the
trust relationship between participants rely on the blockchain
technology which is an open ledger containing all current and
historical transactions in the system. To prevent alterations of
previous transactions and maintain the integrity of the ledger,
the ledger is organized as a hash tree, and the system requires
participants to use their computational power to generate
proof of work (PoW) by solving cryptographic puzzles. The
PoW is used as a distributed random function to implement
leader election that is resilient to Sybil attacks.

A PoW is required to generate a block and add transactions
to the blockchain. This process is essential formaintaining the
integrity, correctness, and consensus, but on the other hand
it is very expensive. Therefore, the nodes who create a new
block earn a certain amount of Bitcoin (newly minted) in
addition to transaction fees (bidded on each transaction) as an
incentive. The process of block generation is called mining,
and those carrying out this activity are called miners.

Once someone generates a new block by solving a PoW
puzzle, and this solution is disseminated into the Bitcoin
network, all nodes begin to solve a new cryptographic puzzle
on top of this newly created block. The blocks are organized
in a directed tree where each block contains a reference to a
previously found block as depicted in Figure 2. The root block
of the tree is called the genesis block, an ancestor of all blocks
by definition, and is hardcoded into the client software. The

57010 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 2. Blockchain: Each block contains the information (hash) of the
parent block, and is linked in chronological order. Only the longest
branch is accepted, and other shorter branches are deemed invalid – the
consensus mechanism.

distance between a block b and the genesis block is referred
to as its block height, and the block that is furthest away from
the genesis block is referred to as blockchain head. Then,
the blockchain is defined as the longest path from any block to
the genesis block – any other shorter branch is called a ‘fork’
and deemed invalid by the nodes in the network. This is how
consensus is maintained.

To include a reference to the parent block, that parent
block’s identity (its hash) has to be known in advance, and
thus the child block must have been found after the parent.
This chaining is used to assign a chronological order to the
transactions: transactions in lower height blocks must have
been verified before transactions in higher blocks. As only
the blocks appearing in the blockchain (i.e. currently longest
branch) will be rewarded with newly minted coins that are
accepted by other users, miners will always attempt to find a
block that builds on the current blockchain head. Building on
a shorter branch, a fork, would be a waste of computation on
what is likely be to invalidated by the consensus mechanism.

However, unfortunately, blockchain forks do occur in Bit-
coin, more often than one may expect [7]. Blockchain forks
may occur intended (e.g. selfish mining [14]–[18], double
spending [13], [19], etc.), but also unintended due to propa-
gation delay in the network [7]. A fork implies that the ledger
replicas in the network may no longer be consistent; that is,
the network is not at a consensus about the balances of the
accounts2 and which transactions are valid. For this reason,
forks should be avoided as much as possible. There is one
large thread of research on protecting against the intended
attacks, and our work approaches the problem from a net-
working perspective on the unintended forks due to propa-
gation delay. That is, we focus on the peer-to-peer nodes,
connections, and message dissemination latency to propose
a simple peer-selection rule that can make the information
propagation faster and mitigate the problem.

B. NETWORK
All Bitcoin nodes (a.k.a clients) are connected to each other in
a peer-to-peer network, and thus there are no central servers
or authorities. A node wanting to join to the network for
the first time thus needs to know who the peers are, which
peers to connect to, and the addresses of those peers. For this

2To be precise, we mean the value of the UTXOs for their corresponding
keys.

purpose, a set of special peers called ‘seed’ nodes, also known
as ‘Bitcoin DNS’ nodes are used. Such seed nodes maintain
a list of peers known them, and returns a subset of the list (in
a ‘addr’ message) upon request (‘getaddr’ message), where
the nodes in the returned subset are chosen randomly and can
contain up to 1000 nodes. The set of seed nodes are hardcoded
into the Bitcoin client software for initial bootstrapping, and
a subset known as of January 2018 are listed below.

• seed.bitcoin.sipa.be
• dnsseed.bluematt.me
• dnsseed.bitcoin.dashjr.org
• seed.bitcoinstats.com
• seed.bitcoin.jonasschnelli.ch
• seed.btc.petertodd.org

Note that, once a node knows of peers that it can connect
to other than the seed nodes, it may ask any other peer for
additional peers (address) list in the same way as asking the
seed nodes. This is how we perform measurements.

After retrieving the peers list, a node ‘randomly’ selects
an address from its set of known addresses and attempt to
establish a connection. A node repeats this process until it
successfully connects to peers and the number of outgoing
connections reach 8, the default maximum. If one of 8 outgo-
ing connection is disconnected, the node will try to maintain 8
outgoing connections by trying to connect to another peer.
At the same time, a node may accept incoming connections
from other peers, up to 117, the default maximum number of
incoming connections. A node will reject connection requests
if this limit is reached. Note that, although 8 and 117 (total
of 125) are the default maximum, the number of connections
may vary according to the configuration and network settings
of the Bitcoin client used [6].

It is well known that Bitcoin relies on peer-to-peer broad-
cast to distribute pending transactions and confirmed blocks.
However, one of the misconception about Bitcoin’s network
by non-technical general public is that, this broadcast is a
real (physical) broadcast to all nodes in the network. It is
not. Bitcoin network is an overlay network built on top of
peer-to-peer connections, and broadcasts are conceptual at
the application layer. It is actually implemented as multiple
TCP unicasts between connected peers determined by the
connection establishment rule described above. Thus, (by
default) up to only 125 peers will receive a message sent by a
node. Then, recursive flooding is used to eventually propagate
the message throughout the whole network.

AlthoughBitcoin’s network formation procedure described
above is intended to induce a random graph topology, how-
ever, due to reasons such as the use of a few designated seed
nodes and uneven geographic distribution of nodes, Bitcoin
network is not purely random. And the topology over which
this flooding is executed affects the latency of information
propagation. One node may receive new information earlier
than others, and the time required to disseminate a message to
‘all’ nodes may take significantly more than it takes to deliver
to connected nodes. If a data item does not spread throughout

VOLUME 7, 2019 57011

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

the network quickly, then the system risks reaching an incon-
sistent state, a fork. Thus, the connection establishment rule
used in Bitcoin nodes is of significant importance.

Finally, each node connected to the network may individ-
ually decide how to contribute to the network by choosing
which service to provide. For example, by relaying transac-
tions, by storing a copy of the blockchain or by using their
own computational power for mining. We call the node who
stores and serves the full blockchain as ‘full node’. A full
node will (usually) accepts incoming connections, verify
transactions and blocks, and contribute to data propagation.
A full node may also mine for new bitcoins. On the other
hand, a ‘light-weight client node’ (e.g. Bitcoin wallet on your
smartphone) does not accept incoming connections, does not
store the blockchain in its storage, does not verify blocks,
and (usually) does not participate in the message propagation.
Instead, light-weight clients can make transactions (e.g. pur-
chases, money transfer) and send that information to known
full-nodes so that the full-nodes can propagate those trans-
actions throughout the Bitcoin network. Intuitively, it would
not be feasible to store hundreds of gigabytes of blockchain
data on your smartphone and perform mining. Thus, most of
casual users use only the light-weight clients on their personal
PCs and smartphones. Of course, there could be nodes with
other variations of client software that support partial subset
of full node’s functionalities.

Thus, although it is difficult to confirm whether a node
is a full node or not by simple message exchanges, we can
generally regard a node which accept incoming connection
as a full node. As we will show later in Section IV, although
there are over a million client nodes in the Bitcoin network,
the number of full nodes are only in the order of ∼10000,
another piece of information that non-technical general pub-
lic are unaware of. Note that, in general, a peer-to-peer node
or the software used by a node is often called a ‘client’ (e.g.
Satoshi Client), and this term includes both full client nodes
and light-weight client nodes. As such, this paper (and many
other Bitcoin-related papers) use the term ‘client’ and ‘node’
interchangeably, and use specific terms ‘full node’ and ‘light-
weight client node’ when necessary.

C. PROTOCOL DIVERSITY
Once connected to the network, a node can send and receive
messages such as blocks and transactions to and from the
connected peers. All these messages, and the actions taken
upon the transmission or reception of these messages, have to
follow the rules settled up by the Bitcoin protocol. However,
the protocol can be updated or changed according to the need
for improvements (e.g. block size increase, attack robust-
ness), and each client may have different customizations for
their own purposes. Table 1 shows that there has been a
continuous update of the protocol.

None of those protocol versions or clients are enforced by a
specific company, organization, or authority. Since Bitcoin is
open source and decentralized, anyone can suggest improve-
ments and participate in the development. Participants can

TABLE 1. History of Bitcoin protocol (BIP: Bitcoin Improvement Proposal).

actively apply the changes to their own clients, or adopt the
clients published by others to meet their needs. Users may
not want to apply some changes intentionally, and this is
also allowable. If the protocol changes are insignificant and
backward compatible, then the network will not be much
different. In contrast, if there is a significant change in the pro-
tocol (e.g., changes in the structure of the block/transaction,
change in the method of transmission, etc.), it will require an
agreement between the participants. This agreement is also
done in a distributed way through voting (within the protocol)
by participants who support or oppose it. In some cases,
the network might divide into several different protocols,
clients, even blockchains.

Due to these unrestrictedness of division, two kinds of
fork may occur in Bitcoin due to protocol updates; soft-
fork, and hardfork. The former just changes previous valid
blocks/transactions to invalid. It is forward-compatible since
old nodes will recognize the new blocks as valid. On the
other hand, in hardfork, old nodes can not validate blocks
created by upgraded nodes that follow newer protocol, so it
makes a permanent divergence in the blockchain. In this way,
Bitcoin Cash (Forked at Block 478558, 1 August 2017) and
Bitcoin Gold (Forked at block 491407, 24 October 2017)
are hardforked from Bitcoin. This coin split is also a major
difference between the current network and the past network.

D. MESSAGES
There are several message types and formats defined in
the Bitcoin protocol. Most frequently used ones are the
following:

57012 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

• version: This is the first message that a client sends to
connect to a peer (at the app-layer, given successful TCP
connection). It contains various information to connect such
as client’s protocol version, services, IP addresses, etc.
• verack: ‘Version ACK’ message is a confirmation mes-

sage in response to the version message. Verack message can
be omitted in recent protocol versions.
• getaddr: ‘Get address’ message requests for peer’s

known address list.
• addr: ‘Address’ message contains a list of peer addresses

that a node knows of. This may be sent in response to a
getaddr message, or periodically to update the information
of connected peers. It may contain up to 1000 addresses.
• inv: ‘Inventory’ message is used to announce the indexes

of block and transaction data which the sender has. Note that
an ‘inv’ message contains only indexes but not the actual
block / transaction data.
• getdata: This message is used to request for the actual

block / transaction data that has been announced in the inv
message. Upon receiving an inv message, a node compares
the index included in the inv message with what it already
has, and requests for new data that it is currently missing.
• tx :‘Transaction’ message contains the actual transaction

data (version, input, output, amount, etc.), and it is sent in
response to getdata message.
• block: This message contains the actual block, and it is

also sent in response to a getdata message.
When a Bitcoin node wishes to connect to a peer,

the sequence of message exchanges for connection establish-
ment is as follows. Let the client who initiates (outgoing)
connection be A, and the client who accepts (incoming)
connection be B. First, A establishes a TCP connection to
B. If successful, A sends a version message to B. Then B
check the validity of the received message and sends a ver-
sion message to A. Upon reception of B’s version message,
A sends verack to B, then B send verack to A. Through this
handshake procedure, two peers knows of each others proto-
col version, client software, services, etc., and regard each
other as connected. Once connected, two nodes exchange
other messages such as inv, block, tx, etc. for data propagation
and relaying. They may also exchange getaddr and addr
messages to obtain addresses of more peers. Figure 3 depicts
this message exchange process.

III. BITCOIN-NODE-SCANNER
In this section, we describe the design and implementation
of our own ‘‘BITCOIN-NODE-SCANNER’’ software for
analyzing the Bitcoin network.

BITCOIN-NODE-SCANNER is based on, and adheres to
the Bitcoin protocol,4 and implements a subset of its func-
tionality to act as a client. At a high level, it scans through
the Bitcoin network to obtain as much known IP addresses
of Bitcoin nodes as possible (which may include full-node
peers and light-weight clients), and verifies the connectability

4Bitcoin protocol wiki: https://en.bitcoin.it/wiki/Protocol_documentation

FIGURE 3. Message exchange process between BITCOIN-NODE-SCANNER
and a connected bitcoin peer.

to each node. If connected, BITCOIN-NODE-SCANNER
obtains information such as the protocol version, client agent
type, round-trip-time from the scanner, etc. from the con-
nected peer using the Bitcoin protocol. Several prior work
has used similar approach [5]–[7], [10], [20]–[22]. However,
some of these are outdated (with older protocol version), not
publicly available, and did not collect the information that
we needed. Thus, we adopted the ideas from prior work but
implemented our own up-to-date scanner for collecting data
needed for our analysis. We have also made our up-to-date
scanner publicly available.5

When the BITCOIN-NODE-SCANNER starts, it does
not know of any peer’s IP addresses. By issuing a getaddr
command to the seed nodes (Section II-B), BITCOIN-
NODE-SCANNER obtains a list of nodes (IP address and
port number pairs) that are known to the seed nodes. In
our experiments, seed nodes usually returned about ∼400 IP
addresses including both IPv4 and IPv6 addresses. Then
by recursively applying the same procedure to all reach-
able nodes that we discover and accept connection, that is,
by sending getaddr commands to all connectable nodes we
find, we discover more nodes.

Figure 4 depicts the main functional blocks of our
BITCOIN-NODE-SCANNER implementation. Node
addresses returned in response to getaddr requests are
enqueued into the IP Queue which stores all the unique IP
addresses (together with the port number) that needs to be
connected to. In other words, IP Queue stores all nodes that
are pending reachability check and attempt to connect, after
filtering out the duplicates and already processed addresses.
At the same time, all new unique IP addresses are stored to
the Connection DB (part of the ‘Data Repository DB’) which
is implemented using a hashmap with IP address as the key.
It stores various information obtained from each node, as well
as a flag indicating whether a connection attempt has already
beenmade to the IP address or not to prevent connecting again
to the same node.

5https://github.com/Crepepepe/JBS

VOLUME 7, 2019 57013

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 4. Functional block diagram of BITCOIN-NODE-SCANNER’s
implementation. Data repository (DB) includes Connection DB and other
DBs.

Then, BITCOIN-NODE-SCANNER dequeues one node
at a time from the IP Queue and attempts to connect to
that node. If BITCOIN-NODE-SCANNER fails to connect
to a node, it stores the result to Connection DB and con-
tinues with the next node in the IP Queue. If it succeeds
to connect to a peer, scanner exchanges version and verack
messages with that peer. After receiving verack message,
scanner sends getaddr message to the peer to request for an
addrmessage which usually contains approximately 1000 IP
addresses along with port numbers and timestamps. This
message exchange process is depicted in Figure 3. During this
procedure, BITCOIN-NODE-SCANNER also obtains other
information such as the protocol version, client agent type,
round-trip-time from the scanner, etc. It can also listen to
messages such as inv, transactions, and blocks broadcasted by
the connected peer. After filtering out duplicate IP addresses
based on Connection DB, only those IP addresses that we
have not yet attempted to connect will be enqueued to the
IP Queue. The process ends when IP Queue is empty; that
is, there are no more new nodes pending to be connected and
queried.

If BITCOIN-NODE-SCANNER succeeds to connect to
a peer but does not receive any messages from that peer,
it waits for 10 seconds to timeout, disconnect that peer, and
continues to try to connect to other peers. Due to the large
number of unreachable nodes (TCP connection failures) and
nodes that do not respond to messages even after successful
connection, timeout duration till aborting the attempt could
prolong the scanning process significantly. Thus, to expe-
dite the whole process, BITCOIN-NODE-SCANNER uses
maximum of 128 threads simultaneously where each thread
handles a connection attempt to one node at a time, resulting
in up to 128 simultaneous connections.

Since peers of the Bitcoin network connect to each other
over a TCP channel, we use Netty6 library to handle TCP

6Netty library: https://netty.io

sockets. When trying to connect to a peer, scanner makes a
StateBundle which contains version and ping message from
peer, error messages which occurred during communication,
number of IP addresses in addrmessage and number of newly
discovered IP addresses. Messages are received in raw bytes,
which are collected and passes to the ChannelInboundHan-
dler until the ByteToMessageDecodermatches the checksum
in the message header. The Handler sends the following mes-
sage to the peer depending on the message type in the header.
When scanning finishes, data manager saves the Connection
DB and StateBundle DB into log files in JSON format by
using Jackson7 library.
As a final note, we are not claiming that our BITCOIN-

NODE-SCANNER is superior than those used in prior
work in terms of identifying more number of unique IP
addresses. The comparison cannot be fair if they are not
performed at the same time. Themain point of the comparison
is that, since Bitcoin had significant growth (in terms of
users/transactions/value) during the past few years, we are
interested in seeing how the network statistics (e.g. number
of nodes, country distribution, version/protocol, etc.) changed
over time. In other words, we are not comparing the tools for
collecting data, but comparing the data itself with the goal of
investigating the evolution of Bitcoin nodes. Regarding the
data collection method, all we are claiming is that we have
done our best effort to collect the data with due diligence.

IV. MEASUREMENT
This section presents a comparative measurement study and
analysis between our collected data and the data reported in
prior work.

A. METHODOLOGY
Using BITCOIN-NODE-SCANNER, we conducted one scan
every day at 12:30 PM KST from January 16th, 2018 to
February 21st , 2018 for 37 days. Each scan took around 8 to
10 hours to complete using 128 threads and 10s timeout. The
reason that we selected 37 days for data collection period is
to do a comparative analysis with the work by Donet et al. [9]
which also performed data collection for 37 days. We had
one caveat; the network on which we run experiments does
not support IPv6 addresses. For this reason, although we
collected both of IPv4 and IPv6 nodes addresses, connection
attempts were made to only IPv4 addresses.

In this work, we identify Bitcoin nodes by their IP
addresses. Among all the IP addresses that we collect and
attempt to connect to, some nodes do not accept connection,
and some nodes do accept connection but do not respond
to messages. For the conciseness of analysis and presenta-
tion, we classify nodes into two categories from here on.
We call a node ‘full node’ if it accepts connection and
responds to messages. For all other nodes, we regard them as
‘client node’. ‘All IP addresses’ include both full nodes and
client nodes. This definition and approach has some potential

7Jackson library: https://github.com/FasterXML/jackson

57014 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 5. Newly discovered unique IP addresses (collected using
getaddr request to bitcoin peers, and known to run Bitcoin node) per day.

limitations and may not be precise since nodes may use
dynamic IP addresses, be behind network address translation
(NAT), be behind a firewall, or be hidden in a mining pool.
Furthermore, some full nodes may not respond to messages
(for whatever reason the user of that node/agent has), and
nodes do not return all addresses they know in response to
getaddr requests. For these reasons, we acknowledge the
fact that the IP addresses that we have collected may not
be the complete picture of the Bitcoin network, and the
distinction between ‘full node’ and ‘client node’ may be an
approximation.

B. NUMBER OF NODES AND IP ADDRESSES
After the 37 days of data collection, we have discovered total
of 1,099,322 unique IP addresses corresponding to machines
runningBitcoin nodes. Among those discovered IP addresses,
we found 504,283 (45.8%) on the first scan on the first
day, which implies that there are significant overlap between
nodes found on each day. Interpreting the same data from an
opposite perspective, we see that the IP addresses obtained on
each day has quite a bit of differences. Figure 5 plots, starting
from the first scan, the number of newly discovered unique IP
addresses per day, where x-axis is the actual date of the scan.
It can be seen that the number of newly found IP addresses
gradually decreased to approximately 12,000 per day. Among
those 1,099,322 unique IP addresses, 23,725 were full nodes
(i.e. were connectable and responded to messages) out of
which 8527were found on the first day. On average, we found
approximately∼8500 full nodes every day, where the number
of newly discovered full nodes were around 1000 ∼ 300 per
day. Figure 6 plots the number of all discovered unique IP
addresses (known to run Bitcoin node) per day, as well as the
cumulative number of unique IP address (left y-axis). It also
plots the number of discovered full nodes per day, as well as
its cumulative count (right y-axis).

Now, let’s compare our numbers with prior work. Decker
and Wattenhofer [7] identified ∼16000 unique IP addresses
among which∼3500 was reachable on one day in 2013. Thus
for a one day scan, we see 31.5× times greater number of

FIGURE 6. Total number of discovered unique IP addresses (collected
using getaddr request to bitcoin peers, and known to run bitcoin node)
per day, as well as its cumulative unique count, for full nodes and all
nodes (full+client).

Bitcoin nodes in 2018, a significant increase in 5 years, while
the number of full nodes has increased by only 2.4× times.
In 2014, Donet et al. [9] identified a total of 872,648

unique IP addresses during 37 days, where the first scan on
day-1 found 111,475 nodes. Thus, our measurement shows
only 25% increase for the 37-day data, but approximately
∼5× times increase for the day-1 count in 2018 compared
to Donet’s data in 2014. Also in 2014, Biryukov et al. [12],
reported ∼100,000 IP addresses (in one day) among which
∼8000 where reachable full nodes. The number of all IP
addresses is consistent with Donet’s work, a ∼5× times
increase, while the number of full nodes has increased by
only ∼7%.

In 2016, Pappalardo et al. [5], [10] observed 12,425 unique
peers (among which 8969 on IPv4 network) during 7 days
in May 2016, with an average of ∼6000 peers participat-
ing to the Bitcoin network at the same time. Also in 2016,
Fadhil et al. [21] conducted measurement for one week and
found 6430 peers and 313,676 client IP addresses. Compared
to Pappalardo’s work, our data has approximately 20∼30%
increase in the number of full nodes. For the Fadhil’s work,
our measurement has roughly 2× more numbers and we are
guessing that the methodology of measurement could have
been slightly different.

Overall, we observe that the number of Bitcoin nodes (in
terms of unique IP addresses) has increased significantly
(31.5×) over the past 5 years. However, the number of full
nodes has increased at amuch lower rate (2.4×) than the num-
ber of all nodes. This implies that, although the number of
Bitcoin ‘‘users’’ has increased significantly, majority are pas-
sive users using light-weight clients only, presumably general
public that are interested in the financial aspect of Bitcoin.
On the other hand, the number of ‘‘peers’’, the active users
who participate in the peer-to-peer network and contribute
in maintaining the blockchain by providing a full node, has
not increased much. This trend may not be what the original
‘one CPU one vote’ philosophy intended, andmay change the
direction of how the technology will evolve in the future.

VOLUME 7, 2019 57015

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

TABLE 2. Summary of number of nodes (IP addresses) in related work.

FIGURE 7. Map of full-node locations based on IP addresses.

C. PORT NUMBER
The default TCP port number used by the Bitcoin network
is 8333. However, some nodes may use different port num-
bers for various reasons such as hardfork, firewall/security,
testing, or to be in a mining pool. For example, different
cryptocurrencies branched by bitcoin hardfork use same pro-
tocol and network while use different default port number
such as 8335 for Bitcoin Cash and 8338 for Bitcoin Gold.
Furthermore, light client nodesmay use dynamic port number
(0), and Bitcoin test network uses 18333. In our collected
dataset, 96.8% of the full nodes and 93.7% of all nodes used
the default port number 8333, a dominant proportion which
implies that not many users change the default port number.
Other (relatively) popular port numbers are 8555 (3.7%),
9145 (1.5%), 8338 (0.41%), 8334 (0.22%), 8838 (0.16%),
18333 (0.04%), 0, etc., but their proportions are small, and
those not listed here are almost negligible.

D. GEOGRAPHICAL LOCATION
We identify Bitcoin nodes by their IP addresses, and we
can infer the geographical distribution by locating those IP
addresses.We used geolite2 IP geolocating package8 to deter-
mine the country of a peer using the IP address. Figure 7
depicts the geo-location of each Bitcoin node’s IP address
on the globe (better seen in color), and Figure 8 presents the
percentage distribution of how many unique IP addresses of
Bitcoin nodes are located in each country. We counted both
‘all unique IP addresses’ of nodes as well as the unique IP
address of ‘full-nodes’ only. The table is sorted by the number
of full-node IP addresses, and lists the top 30 countries that

8geolite2 package: https://github.com/rr2do2/maxminddb-geolite2

FIGURE 8. Percentage ratio (%) of all IP addresses and full nodes count
for each country, ordered by the number of full nodes.

show the highest number of Bitcoin nodes during the 37-days
of our data collection.

The figure shows that United States is clearly at the top
with over 30% for both ‘all node’ and ‘full node’ IP addresses.
Germany is at the second place, and then follows China. It is
interesting to see that France, Netherlands, and Canada has
relatively higher proportion of full-nodes in comparison to
all-node IP addresses, where as Russia and Ireland are the
opposite which means that there are many ‘users’ but less
‘volunteers’, relatively.

These results are somewhat similar and different from
the data reported by Donet et al. in 2014 [9]. Note that
they had data for IP addresses of all Bitcoin nodes without
distinction for full-nodes, and thus we compare the rank
ordering of all-node IP addresses only. In [9], it is identical
that United States was at the top. However, China was at the
2nd place (14.98%), followed by Germany (6.90%), United
Kingdom (6.14%), and Russia (6.14%). Ireland was not even
in top 25 countries. The proportion of United States went
up from 22.08% to 37.63%, the gap between United States
and the second country became larger, and China’s rank went
down to 4th (3rd for full nodes) with notable reduction in the
distribution share. This may apparently be because relatively
more users are joining in United States, or because more
nodes are hiding behind NAT or mining pools in other major
countries such as China.

More interesting observation from the country distribution
data can be seen in Figures 9(a) and 9(b), which plot the rank
of each country versus the percentage ratio of those countries
for their IP addresses and full-node count in linear and log-log
scale, respectively. The data shows power-law distribution,
with their trend and coefficients similar to Zipf’s law. Specifi-
cally, for the 37-days full-node IP address data, the percentage

57016 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 9. Rank vs. ratio (percentage) of countries for their IP addresses
and full node count. The figures show power-law distribution. (a) Linear
scale. (b) Log-log scale.

FIGURE 10. CDF of the distances between any two peers, for all pairs of
full-nodes, based on geo-locations of their IP-addresses.

ratio of a country can be approximated/estimated based on
their rank using the relationship,

ratiof (rank f) =
0.4155

rank f −1.352
(1)

Similar distribution holds for all node IP addresses as well as
for 1-day data, with their power-coefficients ranging between
−1.352 ∼ −1.506 and the numerator coefficients ranging
between 0.4155 ∼ 0.5071. For example, the rank-ratio
relationship for the 37-days all-node IP addresses can be
approximated as,

ratioa(ranka) =
0.4946

ranka−1.492
(2)

TABLE 3. Comparison of Bitcoin Nodes’ Protocol Version Distribution
in 2018 with Data From 2016 [10].

Finally, to get a sense of geographical distribution of
full-node peers, we plotted the cumulative distribution func-
tion (CDF) of the distances between any two peers, for
all possible pairs of full-nodes that we found, based on
the geo-locations of their IP-addresses. This is shown in
Figure 10. The purpose of this figure was to get an idea
on how distant (physically) are the peers and how they are
clustered. We have plotted for full-node peers only since
only the full nodes participate in the information dissemina-
tion, and physical distance indirectly correlate to propagation
latency in the network. Figure 10 shows that there are steep
increases at distances below 2500km and between 5500km
∼ 12000km, but a plateau around 4000km ∼ 6000km and
also after 12500km. This is because the distance between
North America and Europe over the North Atlantic ocean
is approximately 6000∼8000km, and the distance between
Asia and North America over the Pacific ocean is approx-
imately 9500∼11000km. Centered around the majority of
nodes within United States (32.03%), there are many node
pairs that are within continent (<2500km) and also pairs
that are inter-continent (6000km∼12500km). This distance
distribution is one of the basis which inspired us to design
our simple distance-based peer-selection rule in Section V.

E. BITCOIN PROTOCOL VERSION / AGENT TYPE
The work by Pappalardo et al. [10] presented the distri-
bution of Bitcoin peer’s protocol version and client agent
type using their data collected in 2016. To understand the
changes between the past study (in 2016) and our mea-
surement (in 2018), we present Table 3 and Table 4 which
compares the distribution of protocol version and client agent
type respectively. For both tables, we have listed the items
that are above 0.01%, and grouped the remaining into ‘other’s

VOLUME 7, 2019 57017

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

TABLE 4. Comparison of Bitcoin Nodes’ Client Agent Distribution in 2018
With Data From 2016 [10].

category. However, we did not omit the current items that
overlap with the past data.

We can observe from Table 3 that the protocol version has
indeed evolved over the past 2 years. The dominant protocol
version in 2018 is ‘70015’ (88.67%), where as it used to
be ‘70012’ (55.77%→1.8%) and ‘70002’ (25.24%→1.67%)
in 2016. At the same time, we can also see that many older
and less popular versions are still being used in the current
network although their proportions have reduced.

For the client agent, Table 4 shows that ‘Satoshi:0.15.1’
(56.81%) has the majority share currently while all
other agent types each have less than 8%. This dis-
tribution characteristics is quite different from that
reported in 2016 where there used to be multiple pop-
ular agents; ‘Classic:0.12.0’ (27.88%), ‘Satoshi:0.12.1’
(16.81%), ‘Satoshi:0.12.0’ (15.88%), and ‘Satoshi:0.11.2’
(13.76%); each having over 10% popularity. This implies
that the users are converging onto a common type of client
agent due either to keep up-to-date with the protocol updates
(and willingness to do so) or for easy of installation and
configuration. It is interesting to see that very old versions of
client agents are still being used by some of the users today.

V. PEER SELECTION RULE
In this section, we propose a simple and backward-compatible
distance-based peer-selection rule that can reduce the infor-
mation propagation delay in the Bitcoin network, and explore
the alternatives. As we have discussed earlier, network
latency is one of the major reasons for blockchain forks,
and forks should be avoided as much as possible since it
implies inconsistency in the consensus mechanism. We have
also mentioned that information propagation in Bitcoin’s
peer-to-peer network is in fact a recursive flooding over an
overlay network, the number of direct connections between
peers are limited, and thus the selection of which peers to
connect to (directly) is an important design decision. Finally,
the default behavior in Bitcoin is to choose peers randomly.
To this end, our goal is to modify this ‘random’ choice with
some informed selection to improve the connectivity without
any disruption or changes to the protocol. Details are as
follows.

A. PROPOSAL
Selecting which peer to connect to, among all the peer
addresses that a node has learned or obtained through
getaddr/addr messages, can play a critical role in the
P2P connectivity graph and message dissemination latency.
Default behavior of Bitcoin client software defines up to
8 outgoing connections and 117 incoming connections. Thus,
once a node obtains the list of peer addresses, it must choose
8 peers that it wishes to connect to. Again, the default
behavior of Bitcoin client software is to choose randomly.
That is, among all the peer addresses it knows of, it selects
8 random peers and attempts to connect to them. Of course,
the selected peer may not accept the connection request for
several reasons such as not being a full node, does not wish
to accept incoming connections, firewall/NAT, or because it
already has full number of connections that it can support
(e.g. 117). In that case, the algorithm should move on to the
next possible peer for connection.

Our proposal is to modify this ‘random’ choice with some
informed selection to improve the connectivity, and the basis
of our approach is the geographical distribution of full-node
peers (Figure 10). Based on the observation made from the
distances between any possible pair of full-nodes, our idea
is to choose x nodes that are close by, y nodes that are in
mid range, and z nodes that are far way, among the 8 possi-
ble choices (x+y+z=8). And the distinction of near/mid/far
would be probabilistic based on the boundaries at which Fig-
ure 10 shows steep increases. Intuitively, the physical distance
indirectly correlates to propagation latency determined by
the network topology, and our proposal is inspired by prior
work in complex networks which have shown that networks
with small-world topology can spread information faster than
lattice networks [23].

For comparison purposes, we implemented five
rules:
• Rule 1 – [Default]: Random 8 nodes from the known

peers list, the behavior of default Bitcoin client.

57018 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

• Rule 2 – [Nearest]: Nearest 8 nodes from the known
peers list, an extreme case of locality based approach.
• Rule 3 – [Clustering]: Random 7 nodes from the nearer

half, and 1 node from the farther half. In other words, we sort
the known peer-addresses list based on distance from this
node, divide that list into half, and randomly select 7 nodes
from the first half and 1 nodes from the second half.
• Rule 4 – [Half&Half]: Random 4 nodes from the nearer

half, and 4 nodes from the farther half. Similar to ‘Rule 3’,
but 4-4 instead of 7-1.
• Rule 5 – [Near-Mid-Far]: Random 3 nodes from the

nearer 1
3 , 3 nodes from the mid range 1

3 , and 2 nodes from the
farther 1

3 . Said differently, we sort the known peer-addresses
list based on distance from this node, divide that list into three,
and randomly select 3/3/2 nodes from each one thirds.

Among these rules, ‘Rule 1’ is the default behavior of
Bitcoin clients, and ‘Rule 5’ is our proposed approach where
we have used x=3, y=3, and z=2. Rules 2∼4 are imple-
mented for comparison purposes, where Rules 2 and 3 may
be considered similar to what was proposed by Fadhil et al.
[21], [24]. However, their work either had an unclear notion
of ‘long’ link, or had a strict cut-off threshold of 100km
which would not work if there were no peers within 100km
or outside 100km. We have also tried several other variants
of Rule 5 with different values for x, y, and z, and found the
3-3-2 to be the best combination with the current list of IP
addresses.

B. EVALUATION METHODOLOGY
To evaluate our proposed approach, we implemented a
custom-designed event-based simulator in JAVAwhich simu-
lates the information propagation latency of recursive flood-
ing in the Bitcoin’s multihop overlay network. The simulator
takes as input the IP address list of all full-nodes. In addition,
since we need to simulate the propagation delay between
any two connected peers, we use the round-trip-time (RTT)
measurements that we collected using ping to all unique
IP addresses known to run Bitcoin nodes. This approach is
similar to that of Sallal et al. [25]. Results are plotted in
Figure 11 where the straight line represent a linear fit on
the measurements. We use this fit, divided by 2, to simulate
the one-way propagation latency between any pair of nodes
given the distance. Then, since transfer of a Bitcoin data
message requires at least a 3-way handshake of inv–getdata–
tx/block, we multiply the one-way propagation latency by
3 to calculate the 1-hop transmission latency. Note that, since
Internet latency does not satisfy the triangle inequality andwe
have no way of knowing the actual network topology without
having access to all Bitcoin full nodes, our approach is a
best-effort approximation.

In addition, to simulate the transaction/block verification
time at each node, we add a data processing latency Tprocessing
at each hop whenever a node needs to forward a message.
In reality, this time will vary depending on the block size,
processing power of the Bitcoin node, and the workload on
that device. We thus have experimented with several values

FIGURE 11. Round-trip-time (RTT) measurement using ping to all unique
IP addresses known to run bitcoin node. Straight line represent a linear
fit on the measurements.

such as 10ms, 45ms, 100ms, 1000ms, and 2700ms based on
the discussions found online.9 We provide only a representa-
tive result using Tprocessing = 45ms here for brevity.
For the evaluation metric, ‘information propagation

latency’ is defined as the time required to deliver a message
from an originator node to all nodes in the network through
recursive flooding. A message will be delivered directly to
connected peers in 1-hop from the sender, but otherwise
will require forwarding over multiple hops. We transmit
1000 messages with randomly selected originator nodes, and
run the simulation 5 times to average the results.

C. EVALUATION RESULTS
Figure 12 plots the information propagation latency to all
nodes in the Bitcoin network using various peer selection
rules. It shows that our proposed ‘Near-Mid-Far’ approach
achieves reduced propagation latency compared to all other
approaches in terms of lower mean, median, max, min,
and standard deviation. We have tried extensive combina-
tions of x, y, and z values, and 3-3-2 was one of the
best configurations. At the same time, the result shows
that ‘Nearest’ or ‘Clustering’ approaches are not prefer-
able. Although the improvement achieved by ‘Near-Mid-Far’
approach is not huge, there was clear and consistent improve-
ment for every run of the experiment. It also shows that the
default ‘random’ selection is a reasonable approximation of a
better-informed strategy that trades-off implementation sim-
plicity, and implies that without the full topology information
from within the network, there is no substantial room for
improvement in peer selection rule.

Figure 13 is the CDF of the same result in Figure 12.
It showsmore clearly that ‘Near-Mid-Far’ approach improves
on the latency distribution of information propagation,
and confirms that ‘Nearest’ or ‘Clustering’ ([21], [24])
approaches should not be selected. The reason for such result
can be inferred from Figure 14 which plots the CDF of the
number of forwarding hops required (by recursive flood-
ing) for information propagation to all nodes in the Bitcoin

9e.g. https://bitcoin.stackexchange.com/questions/50349/how-long-does-
block-validation-take

VOLUME 7, 2019 57019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

FIGURE 12. Information propagation latency to all nodes in the bitcoin
network using various peer selection rules. Error-bars represent min and
max.

FIGURE 13. CDF of information propagation latency to all nodes in the
bitcoin network using various peer selection rules.

FIGURE 14. CDF of the number of forwarding hops required (by recursive
flooding) for information propagation to all nodes in the bitcoin network
using various peer selection rules.

network using various peer selection rules. It shows that
a better peer selection rule affects the connectivity graph,
reduces the network diameter in terms of number of hops, and
thus results in lower information propagation latency over the
network.

As a final note, our proposed approach is backward-
compatible in the sense that it can be deployed incrementally
and independently by individual Bitcoin clients without any
global agreement or protocol changes.

VI. SURVEY OF RELATED WORK
There are several prior work that investigate and perform
measurement study on the Bitcoin network from a networking

perspective [5]–[7], [10], [20]–[22]. As we have declared
earlier, some part of our measurements are re-doing (in 2018)
of what has been done in the past (2013∼2015). Our goal is
to present a comparative analysis of how the Bitcoin’s peer-
to-peer network has evolved over the recent years, especially
after the explosive growth of Bitcoin since 2016.

In 2012, Sebicas presented ‘Bitcoin P2P Network
Sniffer’ [20], a light-weight open source custom software
written in Python that can sniff the transactions or blocks
from a connected node without participating in the Bitcoin
peers network. However, this software is no longer func-
tioning because the Bitcoin protocol has been modified
since then. Our BITCOIN-NODE-SCANNER implements
the updated protocol using Java, and has been designed to
fit our purpose of efficiently collecting peers list, version
messages, and RTT measurements from all connectable
nodes.

In 2013, Decker and Wattenhofer [7] studied the rate of
information propagation throughout the Bitcoin network and
proposed modifications to accelerate it. By establishing con-
nections with each peer, they measured the time that blocks
or transactions received take to propagate into the network.
Based on the measurements of information dissemination
delay, they introduced an analytical model that explains the
existence of forks, matched it with their observations, and
analyzed that propagation delay is the primary cause for
blockchain forks. To mitigate the problem, they proposed a
few changes to the protocol to speed up the propagation;
(1) minimize verification, (2) pipelining block propagation,
and (3) connectivity increase to reduce the distance between
the origin of a transaction or a block and other nodes. This
work identified ∼16000 unique IP addresses among which
∼3500 was reachable.

In 2014, Donet et al. [9] measured data on Bitcoin network
to identify a list of 872,648 different IP addresses known to
run Bitcoin node. They used a client called ‘BTCdoNET’,
a modified version of Bitcoin P2P Network Sniffer [20],
and presented information on the geographic distribution,
network stability, and information propagation latency. Data
collection was done in 2014 for 37 days, one scan per
day, and 2 hours per scan. Their first scan on day-1 found
111,475 nodes This reference work is the reason why we
chose 37 days for our data collection as well; for fair quanti-
tative comparison.

Biryukov et al. [12], also in 2014, investigated a method
to deanonymize Bitcoin users, which allows to link user
pseudonyms to the IP addresses where the transactions are
generated. Their technique uses Bitcoin address propagation
messages to detect peer links based on the idea that each client
can be uniquely identified by a set of nodes it connects to,
even if behind NAT. They exploited the fact that, until at that
time, it was possible to guess the connections of a peer just
by retrieving several times the known peers list and sorting
all the records in chronological order. This work reported
∼100,000 IP addresses (clients) among which ∼8000 where
reachable (full) nodes.

57020 VOLUME 7, 2019

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

In 2015, Miller et al. [6] developed a system called
‘CoinScope’ using similar address scanning approach, and
proposed a technique called ‘AddressProbe’ to infer peer-to-
peer links in Bitcoin network based on the characteristics of
timestamps. Discovering connections was possible because
each client kept updated timestamp of a peer. They also ana-
lyzed the inferred topology to discover high-degree nodes and
influential nodes in the topology. They found that there are
nodes that have an order of magnitude more connections than
the default maximum 125 connections, implying existence
of mining pools or some ‘influential’ nodes. Data collection
was done 2014 for 18 days, but there was no statement
regarding the exact number of IP addresses collected. This
was a notable work which revealed possible vulnerability in
the Bitcoin clients. For this reason, however, the Bitcoin Core
client software has been updated to avoid such inference and
possible attacks.

In 2016, Pappalardo et al. [5], [10] investigated the dynam-
ics of blocks and transactions by monitoring the Bitcoin
network using a custom client written in ‘Go’ language which
uses similar address scanning approach. Data collection was
done in May 2016 for 7 days, and the authors observed over
12000 unique peers (among which 8969 on IPv4 network)
with an average of ∼6000 peers participating to the Bit-
coin network at the same time. Based on their analysis of
collected transactions and block messages, they report that
sizable fraction of transactions is not processed in a timely
manner.

There are also a few prior work that attempts to tackle
the problem of information propagation delay in the Bitcoin
network [7], [21], [24], one of which we have already men-
tioned above (Decker et al. [7])
In 2016, Fadhil et al. [21] collected the number of reach-

able nodes in the Bitcoin network for one week, and found
6430 peers and 313,676 client IP addresses. Based on the
collected data, the authors proposed BCBSN (Bitcoin clus-
tering based super node) mechanism in an attempt to improve
propagation delay in the Bitcoin network through geograph-
ical clustering. In BCBSN, nodes geographically close to
each other form a cluster, and one node within the cluster is
assigned the role of cluster head, called ‘super peer’, which
maintains the cluster and manages data propagation across
clusters. Non-super peer nodes propagate information within
the cluster only, and only the super peers propagate infor-
mation to other distant super peers. The key objective is to
reduce the churn of the Bitcoin overlay network. However,
it is unclear how the boundaries of proximity is defined and
how many super peers (thus clusters) should exist over the
globe. Furthermore, BCBSN introduces several new mes-
sages and rules for super peer selection and maintenance that
are not backward compatible: the proposal cannot be adopted
gradually by Bitcoin peers. Moreover, the super peers need to
maintain states regarding how long each node has been online
and how much Bitcoins are burned by each node. This may
introduce high overhead to the super peers, and there is no
clear incentive / reward for the role.

To improve upon BCBSN, the same authors proposed
another locality based clustering (LBC) protocol [24] which
also selects peers based on proximity to form clusters, but
instead of using cluster heads, LBC takes a distributed
approach where each node uses local rule to determine which
cluster to join. However, LBC uses a fixed distance threshold
which is not robust to distance and density variations (what
if no node within 100km?), and there is no explanation on
how to select distant peers. On the contrary, our proposal
is extremely simple, light-weight, and backward compatible.
Although the idea of attempting to reduce the number of
propagation hops is similar, our proposal has no additional
messages nor states, and only a simple local rule for selecting
connections can be adopted gradually by Bitcoin peers.

We have listed so far the prior work that are most related
to ours; investigating nodes participating in the Bitcoin net-
work from a networking perspective by scanning through
the network and collecting IP addresses. There are several
other threads of research on Bitcoin. For example, there
are a body of work on the privacy and anonymity of Bit-
coin users [26], [27], analyzing the transaction graphs [8],
investigating double spending problem [13], [28], and on the
attacks and security of Bitcoin system [14], [29]–[32]. Those
line of work are orthogonal to ours.

VII. CONCLUSION
This work presented a comparative measurement study of
nodes in the Bitcoin network by scanning the live Bitcoin
network for 37 days in 2018 and compare them with data
reported by prior work in 2013∼2016. Our measurements
have shown that there are approximately 1million users in the
Bitcoin networks, but only around 8500∼23000 are full-node
peers that participate in information propagation. The num-
bers have increased, but at a much slower rate than the
increase in number of transactions or value of Bitcoin. United
States has the most number of users followed by Germany
and China, and the rank–ratio relationship of the country
distribution follows a power-law, similar to the Zipf’s dis-
tribution. Furthermore, the protocol version and client agent
type are evolving and converging. In addition, based on the
observations made from the measurement study, we proposed
a simple distance-based peer selection rule for improved con-
nectivity and faster data propagation. Evaluation results show
that our proposed light-weight and backward-compatible peer
selection rule has potential to reduce data dissemination
latency. For future work, we plan to design and implement
an open-source library for network simulator NS-3 that can
more accurately simulate the Bitcoin network.

REFERENCES
[1] S. Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: http://www.bitcoin.org/bitcoin.pdf
[2] W. Dai. (1998). B-Money. [Online]. Available: http://www.weidai.com/

bmoney.txt
[3] N. Szabo. (Dec. 2005). Bit Gold. [Online]. Available: https://

unenumerated.blogspot.kr/2005/12/bit-gold.html
[4] F. Tschorsch and B. Scheuermann, ‘‘Bitcoin and beyond: A technical

survey on decentralized digital currencies,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

VOLUME 7, 2019 57021

S. Park et al.: Nodes in the Bitcoin Network: Comparative Measurement Study and Survey

[5] G. Pappalardo, G. Caldarelli, and T. Aste. (Jun. 30, 2016). The Bitcoin
Peers Network. [Online]. Available: http://blockchain.cs.ucl.ac.uk/wp-
content/uploads/2016/11/P2PFISY2016_paper_32.pdf

[6] A. Miller et al. (May 2015). Discovering Bitcoin’s Public Topology
and Influential Nodes. [Online]. Available: http://cs.umd.edu/projects/
coinscope/coinscope.pdf

[7] C. Decker and R.Wattenhofer, ‘‘Information propagation in the bitcoin net-
work,’’ in Proc. IEEE 13th Int. Conf. Peer-Peer Comput. (P2P), Sep. 2013,
pp. 1–10.

[8] D. Ron and A. Shamir, ‘‘Quantitative analysis of the full bitcoin transaction
graph,’’ in Financial Cryptography and Data Security. Berlin, Germany:
Springer, 2013, pp. 6–24.

[9] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartí, ‘‘The bitcoin
P2P network,’’ in Proc. Financial Cryptogr. Data Secur. FC Workshops,
BITCOIN WAHC, vol. 16, Mar. 2014, pp. 87–102.

[10] G. Pappalardo, T. Di Matteo, G. Caldarelli, and T. Aste, ‘‘Blockchain
inefficiency in the bitcoin peers network,’’ CoRR, vol. abs/1704.01414,
pp. 1–15, Apr. 2017.

[11] J. Göbel and A. E. Krzesinski, ‘‘Increased block size and bit-
coin blockchain dynamics,’’ in Proc. Int. Telecommun. Netw. Appl.
Conf. (ITNAC), Nov. 2017, pp. 1–6.

[12] A. Biryukov, D. Khovratovich, and I. Pustogarov, ‘‘Deanonymisation of
clients in bitcoin P2P Network,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), 2014, pp. 15–29.

[13] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun,
‘‘Misbehavior in bitcoin: A study of double-spending and accountability,’’
ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, pp. 2:1–2:32, May 2015.

[14] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, ‘‘Be selfish and avoid
dilemmas: Fork after withholding (FAW) attacks on bitcoin,’’ inProc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 195–209.

[15] I. Eyal and E. G. Sirer, ‘‘Majority is not enough: Bitcoin mining is vulner-
able,’’ CoRR, vol. abs/1311.0243, pp. 1–17, Nov. 2013.

[16] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, ‘‘Optimal selfish mining
strategies in bitcoin,’’ CoRR, vol. abs/1507.06183, pp. 1–31, Jul. 2015.

[17] M. Rosenfeld, ‘‘Analysis of bitcoin pooledmining reward systems,’’CoRR,
vol. abs/1112.4980, pp. 1–50, Dec. 2011.

[18] K. Nayak, S. Kumar, A. Miller, and E. Shi, ‘‘Stubborn mining: Generaliz-
ing selfish mining and combining with an eclipse attack,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy, Mar. 2016, pp. 305–320.

[19] G. O. Karame, E. Androulaki, and S. Capkun, ‘‘Double-spending fast
payments in bitcoin,’’ inProc. ACMConf. Comput. Commun. Secur. (CCS),
2012, pp. 906–917.

[20] Sebicas. (2013). Bitcoin p2p Network Sniffer. [Online]. Available: https://
github.com/sebicas/bitcoin-sniffer

[21] M. Fadhil, G. Owenson, and M. Adda, ‘‘A bitcoin model for evaluation
of clustering to improve propagation delay in bitcoin network,’’ in Proc.
IEEE Int. Conf. Comput. Sci. Eng. (CSE), IEEE Int. Conf. Embedded
Ubiquitous Comput. (EUC), 15th Int. Symp. Distrib. Comput. Appl. Bus.
Eng. (DCABES), Aug. 2016, pp. 468–475.

[22] S. Feld, M. Schönfeld, and M. Werner, ‘‘Analyzing the deployment of
bitcoin’s P2P network under an as-level perspective,’’ Procedia Comput.
Sci., vol. 32, pp. 1121–1126, Jan. 2014.

[23] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ‘small-
world’ networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.
doi: 10.1038/30918.

[24] M. Fadhil, G. Owenson, and M. Adda, ‘‘Locality based approach to
improve propagation delay on the bitcoin peer-to-peer network,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 556–559.

[25] M. F. Sallal, G. Owen, and M. Adda, ‘‘Bitcoin network measurements
for simulation validation and parameterisation,’’ in Proc. 11th Int. Netw.
Conf. (INC), 2016, pp. 109–114.

[26] I. Miers, C. Garman, M. Green, and A. D. Rubin, ‘‘Zerocoin: Anonymous
distributed e-cash from bitcoin,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2013, pp. 397–411.

[27] F. Reid andM.Harrigan, ‘‘An analysis of anonymity in the bitcoin system,’’
in Security and Privacy in Social Networks. NewYork, NY, USA: Springer,
2013, pp. 197–223.

[28] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten, ‘‘Have a
snack, pay with Bitcoins,’’ in Proc. IEEE P2P, Sep. 2013, pp. 1–5.

[29] C. Decker and R. Wattenhofer, ‘‘Bitcoin transaction malleability and
MtGox,’’ in Proc. Eur. Symp. Res. Comput. Secur. Cham, Switzerland:
Springer, 2014, pp. 313–326.

[30] Y. Kwon, D. Kim, Y. Son, J. Choi, and Y. Kim, ‘‘Doppelganger in
bitcoin mining pools: An analysis of the duplication share attack,’’ in
Proc. Int. Workshop Inf. Secur. Appl. Cham, Switzerland: Springer, 2016,
pp. 124–135.

[31] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, ‘‘Eclipse attacks
on bitcoin’s peer-to-peer network,’’ in Proc. 24th USENIX Secur. Symp.
(USENIX Security), 2015, pp. 129–144.

[32] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, ‘‘Tampering with
the delivery of blocks and transactions in bitcoin,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), 2015, pp. 692–705.

SEHYUN PARK is currently pursuing the bache-
lor’s degree with the School of Computer Science
and Engineering, Chung-Ang University, Seoul,
South Korea. He is also a Research Assistant with
the Networked Systems Laboratory (NSL) led by
Dr. J. Paek.

SEONGWON IM is currently pursuing the bache-
lor’s degree with the School of Computer Science
and Engineering, Chung-Ang University, Seoul,
South Korea. He is also a Research Assistant with
the Networked Systems Laboratory (NSL) led by
Dr. J. Paek.

YOUHWAN SEOL is currently pursuing the bach-
elor’s degree with the School of Computer Science
and Engineering, Chung-Ang University, Seoul,
South Korea. He is also a Research Assistant with
the Networked Systems Laboratory (NSL) led by
Dr. J. Paek.

JEONGYEUP PAEK received the B.S. degree in
electrical engineering from Seoul National Uni-
versity, in 2003, and the M.S. degree in electri-
cal engineering and the Ph.D. degree in computer
science from the University of Southern Califor-
nia, in 2005 and 2010, respectively, where he
was a member of the Networked Systems Lab-
oratory (NSL) led by Dr. R. Govindan. He was
with Deutsche Telekom Inc. R&D Labs, USA, as a
Research Intern, in 2010, and then joined Cisco

Systems Inc., in 2011, where he was a Technical Leader with the Internet of
Things Group (IoTG), Connected Energy Networks Business Unit (CENBU,
formerly the Smart Grid BU). In 2014, he was with the Department of
Computer Information Communication, Hongik University, as an Assistant
Professor. He has been an Assistant Professor with the School of Computer
Science and Engineering, Chung-Ang University, Seoul, South Korea, since
2015. He is an IEEE Senior Member.

57022 VOLUME 7, 2019

http://dx.doi.org/10.1038/30918

	INTRODUCTION
	BACKGROUND - BITCOIN
	BLOCKCHAIN
	NETWORK
	PROTOCOL DIVERSITY
	MESSAGES

	BITCOIN-NODE-SCANNER
	MEASUREMENT
	METHODOLOGY
	NUMBER OF NODES AND IP ADDRESSES
	PORT NUMBER
	GEOGRAPHICAL LOCATION
	BITCOIN PROTOCOL VERSION / AGENT TYPE

	PEER SELECTION RULE
	PROPOSAL
	EVALUATION METHODOLOGY
	EVALUATION RESULTS

	SURVEY OF RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	SEHYUN PARK
	SEONGWON IM
	YOUHWAN SEOL
	JEONGYEUP PAEK

