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ABSTRACT Trickle is a scalable and robust flooding algorithm designed for low-power multihop wireless
networks. It aims to reduce redundant packet transmissions and collisions while maintaining information
consistency, and has been popular due to its simple yet efficient operation on most general topologies.
However, Trickle fails to achieve reliability and low latency under certain, but not uncommon, scenarios.
To tackle this problem, we propose A2-Trickle, a light-weight enhancement to the Trickle algorithm that
guarantees rapid and reliable dissemination under any topology. A2-Trickle aligns the interval boundary at
propagation times without synchronizing the global clock, and adapts to the network topology for nodes that
could suffer from Trickle’s naïve suppression mechanism. A2-Trickle is implemented on a real embedded
device and is evaluated in various scenarios and topologies through both testbed experiments and simulations.
The results reveal that A2-Trickle adapts to the network and enables faster and more energy-efficient
dissemination while maintaining >99% reliability.

INDEX TERMS Low-power and lossy network (LLN), trickle algorithm, dissemination protocol, wireless
sensor network (WSN), Internet of Things (IoT).

I. INTRODUCTION
With the development of embedded devices and low-power
wireless networking technology, the Internet of Things (IoT)
era has arrived. Today, IoT technology is applied to numerous
real world applications such as smart factory, smart market,
smart hospital, smart home, and smart grid AMI [1]–[8].
These IoT applications primarily collect sensor data from
nodes in the network, but also command the nodes to execute
specific tasks. Moreover, a central node (e.g. server, gateway,
or similar) could propagate information to the entire network
for various purposes such as network configuration or over-
the-air (OTA) software updates. Therefore, IoT applications
require effective mechanisms not only to collect data but also
to disseminate information.

Information dissemination can be done easily in a
single-hop network with a simple broadcast. However, as the
network topology becomes more complex with multihop and
non-uniform physical deployment, data propagation becomes
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more challenging and the complexity increases dramatically
with the number of hops in the network, especially for
low-power and lossy networks (LLN). Three basic building
blocks exist to propagate data over a multihop wireless net-
work: iterative unicast, recursive broadcast (a.k.a flooding),
and the Trickle timer algorithm [9]. Many network protocols
are built on top of these primitives.

Iterative unicast has an advantage of being able to check
the progress of each node and support end-to-end reliability.
This is the reason why iterative unicast is widely used in
many high-end devices. However, it does not scale well.
For example, to forward a message to N 1-hop neighbors,
iterative unicast requires at least N transmissions whereas
broadcast requires only one. For a binary tree-like h-hop
multihop network with N = 2h nodes, iterative unicast
requires �(N logN ) transmissions whereas recursive broad-
cast (explained below) requires �(N ), not to mention signif-
icantly longer network-wide latency.

Recursive broadcast is widely used in resource-constrained
embedded devices due to its simplicity where a node simply
re-broadcasts what it has heard. Ideally, it is significantly
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faster than iterative unicast for dissemination. While doing
so, a node usually uses a random time jitter within a specified
range to mitigate synchronized transmissions and collision
problem, and also ignores the previously-heard packets to
avoid broadcast-storm problem. Increasing the time jitter
range and transmitting slowly can lower the probability of
collision and achieve higher reliability, but at the cost of
latency increase. (Re)transmitting several identical packets
can also enhance reliability, but wastes the channel bandwidth
and energy. This means the recursive broadcast method has an
explicit trade-off between reliability, latency, and overhead as
the configuration changes.

Trickle algorithm is designed to address the above issues
for multihop networks [9]. It has two representative tech-
niques to reduce the number of redundant packets and colli-
sions: halving with doubled intervals, and suppression. At the
end of each transmission, Trickle doubles the transmission
interval to reduce channel usage and collision probability
unless it detects network inconsistency. In addition, it divides
each interval in half and randomly chooses the transmission
time within the later half of the interval. Until the chosen
time, it listens to and counts the number of duplicate packets.
At transmission time, Trickle suppresses the transmission
if the duplicate counter exceeds a certain threshold. With
these simple schemes, Trickle enables reliable, responsive,
and energy-efficient dissemination over a multihop network
with less overhead. For these reasons, Trickle has beenwidely
applied in various standard protocols and IoT applications
such as the IPv6 Routing Protocol for LLN (RPL) [10], [11],
Multicast Protocol for LLN (MPL) [12], OTA programming
for wireless sensor networks (WSN) (e.g. Deluge [13]), and
task propagation in WSN (e.g. Maté [14], Tenet [15]).

Despite its advantages, Trickle algorithm still has some
aspects that must be improved. Although Trickle tries to
avoid collisions by using only the later half of an interval,
collisions can still occur frequently because the transmission
periods overlap between neighboring levels of dissemination
(tx-interval overlap problem). In addition, its suppression
scheme may delay the propagation or even fail to deliver
in some but not uncommon topology with limited paths
(na ive suppression problem). This leads to longer latency,
low packet reception ratio (PRR), and low throughput for
information propagation and convergence.

To address these problems, this work proposes A2-Trickle,
an adaptive & interval-aligned Trickle for rapid and reli-
able data dissemination in low-power multihop wireless net-
works. A2-Trickle (1) aligns and tiles the transmission period
boundaries hop-by-hop to reduce collisions from tx-interval
overlap problem, and (2) applies an adaptive suppression
scheme to overcome na ive suppression problem in the lim-
ited path scenario. A2-Trickle is implemented on a real
low-power embedded device, and is evaluated in various
scenarios and topologies through both a real-world exper-
iment and simulations. The results indicate that A2-Trickle
can choose a better suppression counter according to the net-
work topology, and reduce the number of transmissions and

convergence time while ensuring superior packet reception
ratio (PRR).

The contributions of this paper are as follows:
• The problem of overlapping transmission periods is
demonstrated, and a transmission period aligning &
tiling scheme with little overhead is suggested.

• A topology-adaptive mechanism is proposed that
reduces latency and energy usage while maintaining
>99% PRR for 2 message disseminations per second
even in bottlenecked topology with 100 nodes.

• A2-Trickle is implemented on a real low-power embed-
ded platform, and is compared with the standard Trickle
algorithm through testbed experiments on 31 devices
and extensive simulations on ∼100 nodes.

This paper is organized as follows. We first discuss how
the paper contributes to the body of knowledge in compari-
son against related literature in Section II. Then, Section III
provides an overview of the Trickle timer algorithm, and
discusses the limitations of Trickle using several examples.
We present the design of A2-Trickle in Section IV, and then
evaluate A2-Trickle through simulations and testbed experi-
ments in SectionV. Finally, we conclude the paperwith future
work in Section VI.

II. RELATED WORK
Trickle was originally designed for over-the-air (OTA) code
update in wireless sensor networks [9]. However, it was soon
adopted by many other WSN/LLN protocols and applica-
tions for its potential as an effective data propagation and
multicast mechanism [10], [12]–[16]. For the same reason,
several research work have been conducted to improve the
performance of Trickle in various aspects [17]–[22].
Dynamic Trickle [17] adaptively resizes the boundary of

listen-only period in each node based on the number of neigh-
boring nodes to reduce the convergence time when a node has
few neighbors. However, it encounters an energy-efficiency
issue when nodes have few neighbors because the trans-
mission interval becomes too small. The authors claimed
that this problem can be mitigated by never resetting c
unless inconsistency is detected, but this is a critical prob-
lem if a dissemination bottleneck exists in the network
as discussed in Section III. There have been attempts to
make Trickle recover quickly from inconsistency by choos-
ing t from [0, Imin) instead of [Imin/2, Imin) for the first
interval [18], [19]. In these approaches, however, node trans-
mission intervals could overlap, harming the original ratio-
nale of collision avoidance between neighboring nodes in the
standard Trickle.

Moreover, a few studies have considered the load balancing
problem in Trickle. For example, the work in [20] argues
that the battery imbalance of nodes eventually influences con-
vergence time, and proposes Energy-Aware Adaptive Trickle
(EAAT) that uses battery usage as a metric. It chooses the
threshold K based on the predicted energy usage and residual
battery of each node to balance both the energy and flow
of transmissions. In Adaptive-K [21], each node calculates

VOLUME 8, 2020 214375



G. Jeong et al.: A2-Trickle: Adaptive & Aligned Trickle for Rapid and Reliable Dissemination in Low-Power Wireless Networks

the threshold K by multiplying the redundant counter c with
an additional constant α to achieve load balancing and fast
convergence. However, none of these studies consider nor
resolve the bottlenecked topology issue where some node are
left behind unnotified due to naïve suppression.

In Trickle++ [22], a receiver resizes Imin based on the dis-
tance from the sender predicted using RSSI and LQI. If a node
sends new data, all receivers switch to the proactive mode,
and the farther receivers forward data faster than the nearer
ones to disseminate the data farther quickly. However, if out-
dated data are detected, closer nodes have a better chance to
transmit the recovering data in reactive mode. By switching
modes, Trickle++ can reduce redundant packets, but colli-
sion may occur frequently in a sparse network due to its non-
uniformity of Imin in each node based on distance.
As an alternative to Trickle focusing on code dissemination

in duty cycled WSNs, Shu et al. [23] proposed proportion to
duty cycle length based broadcast (PDLB) scheme. In PDLB,
each node selects appropriate k for broadcasting, and counter-
based priority broadcasting approach is used to limit the
broadcasting of nodes to enable data to be fully diffused
with reduced latency and energy consumption. This work
presented an insightful analysis on the relationship between
duty cycle and transmission delay. However, the proposed
protocol is geared specifically towards code dissemination in
duty-cycledWSN, and is quite complexwhile one of themain
advantage of Trickle and A2-Trickle is their simplicity and
ease of use in general settings.

III. PROBLEM AND MOTIVATION
Trickle algorithm was first proposed as an efficient flooding
algorithm for wireless sensor networks, and it has later been
standardized in RFC 6206 [16] for low-power and lossy wire-
less networks in general. Trickle aims to reduce redundant
packets in the network while maintaining network consis-
tency by controlling the timing and rate of flooding. To do so,
Trickle adopts two representative schemes: the transmission
rate adaptation, and redundant packet suppression. Figure 1
illustrates the operation of Trickle.

FIGURE 1. Basic operation of Trickle.

A. TRANSMISSION RATE ADAPTATION
When a node receives a packet with new information/data that
needs to be disseminated throughout the network, it should
re-broadcast the packet to pass the data to its neighbors
that has not yet received them. Quick and aggressive trans-
mission at each node may achieve faster propagation and
inconsistency resolution in the network. However, it could

incur broadcast storm problem similar to ack explosion prob-
lem, leading to network congestion and waste of bandwidth.
On the other hand, if transmitted too slowly, network could
suffer from low reactivity and longer latency, which leads to
data inconsistency.

Trickle adapts the transmission rate considering this
trade-off by repeatedly doubling the transmission inter-
val, thus transmitting fast in the beginning and slowing
down exponentially. Upon detecting new information, Trickle
chooses its transmission time t within the second half of
the initial interval Imin (e.g. t1 in Figure 1). At the end
of each interval, Trickle doubles the interval length I and
chooses t again from that interval. The interval is doubled
until it reaches Imax, and if so, the interval is fixed as Imax.
To respond to network dynamics promptly, Trickle resets the
interval length to the initial value Imin when it detects any data
inconsistency (including new data) or configuration changes.

B. REDUNDANT PACKET SUPPRESSION
In a single hop network with N nodes where all nodes are
within transmission range of each other, a single link broad-
cast will suffice for dissemination. If all N -1 receiving nodes
rebroadcast, that will be N -1 redundant, useless and unneces-
sary packet transmissions (in an ideal case of 100% reception,
of course). Even in a more realistic scenario where link PRR
is not 100% and a few retransmissions may be required (espe-
cially due to lack of ACK for link broadcasts), simultaneous
transmission of too many identical packets will do nothing
but cause network congestion and channel waste [24]. For this
reason, Trickle tries to send minimal redundant packets while
maintaining network consistency by adopting a suppression
mechanism.

A Trickle node divides its transmission interval into half
and uses each for a listen-only period and transmission
period, respectively. Then, the node randomly chooses a
transmission time t within the transmission period (second
half of the transmission interval), not the entire I period, and
listens to the number of identical packets c from neighboring
nodes. At time t , the node checks whether c exceeds a certain
threshold K . If c is greater or equal to K , it presumes that
there has been sufficient amount of identical transmissions
for every neighboring node to have already received the infor-
mation and does not transmit to reduce redundant packets.
Moreover, as the interval is halved, the probability of colli-
sion decreases between 1 hop depth away (subsequent level)
neighbors.

C. PROBLEM
Trickle has been successful in various use cases, lead-
ing to an IETF standard and adoption in many network
protcols [10], [12]–[16]. However, Trickle may still exhibit
extremely poor performance in several specific scenarios.

First, although the collision probability between next
hop/depth nodes is reduced by halving the intervals, it could
still be high due to enlarged overlapping areas as the number
of neighboring nodes increases. In Figure 2, for example,
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FIGURE 2. Possible scenarios for un-synchronized Trickle.

FIGURE 3. Bottleneck scenario.

node A randomly chooses its transmission time tA1 . At t
A
1 ,

node A transmits a packet (with new data), and node B starts
its transmission interval timer upon reception. In this case,
subsequent intervals of node B overlaps with the intervals of
node A as shown in the figure, leading to collisions between
the two. Furthermore, the overlapped area enlarges as time
passes due to doubling. This means that a Trickle node must
compete with not only the nodes in the same level of dis-
semination, but also nodes at different levels, which nullifies
the whole intension of ‘halving the interval’ scheme. This
problem is due to unsynchronized interval boundaries, and
becomes more severe as the number of neighboring nodes
increases.

Second problem of Trickle is the na ive suppression prob-
lem. A Trickle node suppresses its transmission if the redun-
dancy counter c equals or is larger than the preconfigured
threshold K . In Figure 3, for example, suppose node A ini-
tiates a dissemination and K is set to 1. If node C chooses its
transmission time to be later than node B, node C will receive
node B’s message before its transmission and increase c to 1.
Then at transmission time, node C will suppress its trans-
mission. However, nodes F and G can receive new messages
only from nodeC as illustrated in the figure. Therefore, nodes
F and G cannot receive the packet, and nodes H and I will
also never be updated. However, if node C transmits earlier
than node B, nodes D and E will not receive the message for
the same reason. This can lead to a critical problem of data
inconsistency and information partitioning if any bottleneck
exists in the network.

These problems reveal the necessity of an improved and
adaptive mechanism to disseminate information over a mul-
tihop network, which we design in the next section.

IV. DESIGN
A2-Trickle includes the following simple yet novel methods
to enhance Trickle: 1) aligning the interval boundary, 2) tiling
the transmission period, and 3) adaptive suppression. Interval
alignment helps neighboring nodes to determine when the
interval of the previous sender has started without synchro-
nizing the clock. This accelerates the start of a new interval

and helps avoid overlaps or collisions together with tiling.
Tiling is performed to eliminate overlaps in transmission
periods between adjacent levels of dissemination, even for
the enlarged interval ranges. Through adaptive suppression,
an A2-Trickle node counts neighbors that can receive mes-
sages only from itself, and forwards messages without sup-
pression in those cases to avoid information partitioning and
achieve robust dissemination.

A. ALIGNING INTERVAL BOUNDARY
To address the tx-interval overlap problem described in
Section III, A2-Trickle first aligns the interval boundary
among neighboring nodes. If all nodes are synchronized to
a common network-wide clock, it becomes trivial for the
receivers to synchronize their Trickle intervals with senders.
However, sharing a global clock not only requires significant
extra overhead and sophistigated protocols [25]–[27], but it
may be an overkill since only the interval boundaries need
to be synchronized. Thus, to maintain simplicity of Trickle,
we consider a light-weight approach.

FIGURE 4. Interval boundary alignment.

A2-Trickle aligns the interval boundary among neighboring
nodes by informing them of its own progressed time within
its current transmission interval. To inform the neighbors,
an A2-Trickle node piggybacks the ‘remaining time’ in the
scheduled forwarding packet that it transmits. For example,
consider sender A and receiver B in Figure 4. Node A trans-
mits the remaining time calculated as Imin − tA, where tA

is the transmission time chosen by node A. Then, receiver
B can start its interval timer at the same time as the start
of the first transmission period of node A, which is half of
the transmission interval of node A (see Figure 4). In this
way, node B aligns the start of the interval with transmission
period of the sender, and eliminates the overlap for the ‘first
intervals’ of subsequent nodes (e.g. A, B, and also C). In
addition, as the beginning of the interval is pulled forward
for every subsequent nodes, propagation is more likely to be
faster. However, this is insufficient to eliminate the overlaps
in the second and later intervals as shown in Figure 4, which
leads to the second technique below.

B. TILING THE INTERVAL
Since the transmission intervals are now aligned using the
aforementioned scheme, overlapped areas in the transmission
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FIGURE 5. Tiled intervals can eliminate overlaps in transmission periods.

periods can be eliminated by the ‘tiling’ scheme. Specifi-
cally, A2-Trickle re-organizes the transmission period into
tile-pattern like blocks with repeated small ranges as dis-
played in Figure 5. The size of each block (or tile) is identical
to the transmission period of the first interval, and the number
of blocks in each previously a transmission period must be
an even number since Trickle always doubles the interval.
Therefore, always choosing the odd (or even) tiles as the
new transmission period (orange shaded area) completely
isolates the transmission period between neighboring nodes
as the first interval. The total amount of resulting transmission
period within each interval is halved compared to the original
Trickle after the second interval, but this neither delays the
propagation nor increases the collision probability consider-
ing the exponential doubling of intervals; this is no different
from shifting the doubling by just one step, and it only reduces
the collision probability through isolation. In Figure 5, for
example, node B chooses a random transmission time t
among odd-numbered tiles (i.e., the highlighted ones), and
1-hop away nodes A and C are both in the listen-only state.
As a result, A2-Trickle nodes only compete with the same
level neighbors, never with the next or previous level nodes.
Therefore, aligning and tiling the interval together reduces
collisions and allows faster and smoother propagation.

C. ADAPTIVE SUPPRESSION
We have discussed in Section III that using a fixedK value for
suppression threshold may cause problems in a bottlenecked
topology such as Figure 3; a node that can only receives
messages from one previous hop neighbor may never receive
that data if the neighbor suppresses packets through Trickle’s
naïve suppression. A higher suppression counter can mitigate
the problem, but it also has the disadvantage of channel waste
and congestion. Therefore, a network manager should choose
an appropriate parameter considering various scenarios such
as node failure or uneven physical deployment. Or better
would be to adapt the parameter to the network dynamically.
A2-Trickle adapts the suppression counter by counting the

number of neighboring nodes. An A2-Trickle node remem-
bers and increases its rank (i.e. level, in terms of breath-first
search like propagation) for each dissemination before for-
warding. Rank indicates the shortest hop count from the mes-
sage generator to this node. Then, whenever a node receives
a message, it may take one of the three actions according
to the rank of the sender of that message. First, the node

FIGURE 6. Evaluation topologies.

increases the number of same-ranked nodes Nsame if the node
receives messages from same ranked neighbors. If the node
receives messages from lower-ranked neighbors, it counts the
number of lower-ranked nodes Nlower, and carries the num-
ber into the forwarding messages. The node compares and
records Nmin as the minimum Nlower value whenever the node
receives messages from higher-ranked neighbors. At the end
of each interval, the node calculates the K value as expressed
in Eq.(1).

Knext =


∞ if Nmin == 1
dNsame/Nmine if Nmin > 1
Kdefault if Nmin == 0

(1)

Intuition is that, if Nmin is 1, then there must be neigh-
boring nodes that can receive new messages from this node
only. Thus the node must forward messages for information
consistency regardless of suppression counter. This scheme
ensures that a node that can receive messages only from one
node can receive messages faster and more reliably. From
Eq.(1), an A2-Trickle node uses a low K value if its higher-
ranked neighbors are capable of receiving from enough other
nodes, but selects a highK if it observes that its higher-ranked
neighbor(s) have few lower-ranked neighbors. Because
A2-Trickle changes the suppression threshold for every inter-
val, it can adapt to network dynamics promptly.

V. EVALUATION
In this section, we evaluate A2-Trickle and compare it with
the standard Trickle algorithm with varying configurations.
We experiment on a real 31-node indoor testbed, and also run
simulations on 102 different topologies (1 grid, 1 cross, and
100 random) with ∼100 devices.

A. EVALUATION SETUP
We implement A2-Trickle and Trickle algorithms using
TinyOS 2.1.2 [28] on TelosB [29] platform which consist of
an MSP430 microcontroller and a CC2420 radio transmiting
messages over IEEE 802.15.4 links. For the default applica-
tion layer, a source node generates 1000 unique messages
every 20 seconds (unless stated otherwise), and we define
loss as when a node does not receive a message until a new
message is generated.
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FIGURE 7. Simulation results from the GRID topology.

FIGURE 8. Simulation results from the CROSS topology.

Performance of Trickle depends on how the suppression
threshold parameter K is configured. Using a small K allows
energy-efficient operation, and a large K improves reliability
(and maybe latency) of data propagation. Since we evaluate
on 103 different topologies (1 testbed, 102 simulations), there
is no good K value that fits all. Therefore, every experiment
and simulation was conducted using three different values
of K : 1, 2 and 5.

Three metrics are used for evaluation: ‘convergence time’,
‘packet reception ratio’, and ‘total number of transmissions’.
• Convergence time is the time needed to propagate a mes-
sage into the entire network, and is the most important
evaluation metric.

• Packet reception ratio (PRR) is the ratio of uniquemessages
received by each node against the total number of messages
generated by the source, end-to-end, excluding duplicates.
Note that although Trickle ensures eventual consistency
(100% PRR) for a single packet, a message is lost when
a new message is received before receiving the previous
one.1

• Total number of transmissions represents how the algo-
rithm is effectively suppressing redundant packet for
energy and channel usage efficiency.

B. SIMULATIONS ON VARIOUS TOPOLOGIES
Simulations are conducted using Cooja simulator [30] with
Unit Disk Graph Medium (UDGM) propagation model.

1Of course, some buffering can alleviate this loss like in [13]–[15], but
does not fundamentally change the characteristics of flooding.

Out of 102 topologies used, the ‘grid’ and ‘cross’ are con-
structed manually, and 100 are generated randomly. For the
grid topology, 100 devices are deployed regularly in 10 ×
10 formation, and the source node (message generator) is
placed at the top-left corner. Cross topology is depicted
in Figure 6a where a square represents a small-scale net-
work consisting of 16 nodes in 4 × 4 grid form, and cir-
cle nodes are bottleneck nodes that relay messages between
these square networks. This topology is designed to mimic
uneven physical deployments in the real-world where limited
and bottlenecked paths exist in the network such that na ive
suppression problem may cause information inconsistency.
The distance between each node in both the grid and cross
topology is set to 30 m, and the transmission range is set
to 50 m.

Simulation results are plotted in Figures 7, 8 and 9 for grid,
cross, and random topologies, respectively. The results are in
large consistent: (1) LowK value (i.e.K = 1) results in lower
number of transmissions and thus lower energy usage, but at
the cost of lower PRR and significantly longer convergence
time. (2) High K value (i.e. K = 5) results in 100% PRR and
low convergence time, but at the cost of significantly larger
number of transmissions leading to higher channel and energy
usage. (3) The cross topology (Figure 8), where the na ive
suppression problem is most likely, accentuates the trend
the most with significant loss (<90% PRR) and significantly
longer convergence time. (4) A2-Trickle adaptively achieves
best of all K ’s in all scenarios; 100% PRR with lowest con-
vergence time while maintaining the number of transmitted
packets to those between K = 1 and K = 2 configurations.
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FIGURE 9. Simulation results averaged from 100 RANDOM topologies.

FIGURE 10. Dissemination success ratio vs. inter-packet generation interval (seconds). This result implies dissemination throughput.

FIGURE 11. Testbed experiment results.

It would be a waste of resources to use a high K value
under 100% PRR conditions, and thus, the network man-
ager would need to manually determine the minimum K
value while considering the tradeoff between the convergence
time and energy efficiency. A2-Trickle eliminates the need
for such manual configuration, and adapts to the network
autonomously to provide the best performance achieved by
Trickle with any K configuration: higher PRR with lower
convergence time with just enough transmissions.
Dissemination Throughput: Next, we explore how fre-

quenty a sequence of messages can be propagated into
the entire network without losing packets and maintain-
ing information consistency. This determines, for example,
how quickly we can complete OTA re-programming of the
network. Figure 10 plots the dissemination success ratio
(network-wide PRR) versus inter-packet generation interval
(unit: seconds). Clearly, cross topology is the most challeng-
ing one, and A2-Trickle outperforms Trickle regardless of

K configurations on all topologies. In the grid or random
topology,A2-Trickle canmaintain 99%delivery up until 1 dis-
semination per second, where as Trickle starts to see incon-
sistency at 3 seconds intervals. In the cross topology, while
A2-Trickle maintains 99% up to a message every 2 seconds,
Trickle suffers devastatingly much early on (as can be seen in
Figure 10).

C. TESTBED EXPERIMENT
Simulation results indicate that A2-Trickle propagates mes-
sages faster and chooses an appropriate suppression threshold
according to the network topology. In real-world environ-
ments, many unpredictable variables exist such as multipath
and fading due to walls or human occupants, interference
from other wireless technology and so on. Therefore, exper-
iments must be conducted to ensure that A2-Trickle works in
real environments.
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We configured an indoor testbed with 31 devices in an
office environment. One device is the source node that gener-
ates uniquemessages, and 30 other devices receive thosemes-
sages over multihop LLN. The 30 LLN nodes are deployed in
a 6×5 grid formation as depicted in Figure 6b, and we set the
radio tx power to -25 dBm to configure a multihop network.

Figure 11 presents the experimental results where the trend
is consistent with the simulation results; all cases achieve
100% PRR except for when K = 1, the number of transmis-
sion for A2-Trickle is in between whenK = 1 andK = 2, and
A2-Trickle has the fastest convergence timewhilemaintaining
this property. The important finding from this result is that
A2-Trickle still outperforms the original Trickle in the real
experiments on testbed environment.

VI. CONCLUSION
A2-Trickle is an enhanced Trickle algorithm for rapid and
reliable data dissemination in LLN environments. It was
motivated by the fact that the widely used Trickle algorithm
fails to achieve reliability and low latency under some, but not
uncommon, topologies. To ensure robustness and faster con-
vergence for information consistency, we adopted three ideas:
(1) aligning the interval boundary, (2) tiling the intervals, and
(3) adaptive suppression. Through these simple yet effective
mechanisms, A2-Trickle can forward messages faster, evade
collisions better, and most importantly, avoid leaving any
node unnotified. Furthermore,A2-Tricklefinds an appropriate
set of parameters during the convergence and adapts to the
network for the next propagation. A2-Trickle is implemented
on a real low-power embedded device, and has been evaluated
through both experiments and simulations to show that it
improves reliability, reactivity, and energy-efficiency com-
pared to the standard Trickle algorithm.

We believe that A2-Trickle can replace its predecessor in
many Internet standard LLN protocols such as RPL [10] and
MPL [12], and we leave analytical modeling of A2-Trickle as
our future work.
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