979-8-3315-5678-5/25/$31.00 ©2025 IEEE

LiDAR Reflection Recovery via Shadow Boxing

Kyungmin Kim
Department of Electrical and Electronics Engineering,
Chung-Ang University,
Seoul, Republic of Korea
kyungddin@cau.ac.kr

Abstract—Light detection and ranging (LiDAR) sensor is a
device that can effectively collect 3D spatial information using
lasers. However, reflective surfaces like mirrors pose a challenge
for LiDAR, making it difficult to distinguish between objects in
front and behind a mirror and their reflected counterparts. In
this paper, we propose the Shadow Boxing Method, a technique
for effectively classifying reflected points that appear to be behind
the mirror. We will differentiate reflected points from points
behind the mirror, and further restore these identified points
to their original 3D locations by accurately detecting the relative
position of the mirror and the angle of reflections. This will
overcome the existing limitations of LiDAR sensors, enabling
more accurate sensing. We envision that our idea can potentially
improve the safety of LiDAR-based autonomous vehicles even
when confronted with highly reflective surfaces such as traffic
safety mirrors.

Index Terms—LiDAR, Mirror Reflection, Point Cloud, 3D
Sensing, Object Detection, Segmentation

I. INTRODUCTION

Light detection and ranging (LiDAR) sensor is a device that
acquires spatial information of surrounding objects through
laser pulses. LiDAR is actively used in fields like robotics and
autonomous driving (e.g. including robot vacuum cleaners)
due to its ability to effectively obtain 3D object and environ-
ment information compared to other sensors [1]-[4]. However,
LiDAR can be considered vulnerable in situations where lasers
are reflected or partly penetrated, such as with mirrors or
glasses. In the case of mirrors, most of the laser pulses are
reflected, and if the reflected laser hits another object, it creates
a problem by generating point clouds at incorrect locations.
This can cause hallucination in object recognition or SLAM
mapping [5].

A few prior works have investigated this challenge. For
example, Li et al. [6] improve SLAM accuracy by classifying
reflective surfaces through a geometric approach. However,
this method focuses on offline map refinement, showing lim-
itations in real-time point restoration. Furthermore, Zhao and
Schwertfeger [7] presented an open 3D dataset and benchmark
for deep learning-based research on detecting and classifying
reflective surfaces. Yet, research on restoring and utilizing
distorted points in real-time remains in its early stages.

“This research was supported by the MSIT(Ministry of Science, ICT),
Korea, under the National Program for Excellence in SW), supervised by
the IITP(Institute of Information & communications Technology Planning &
Evaluation) in 2025”(2025-0-00032). J. Paek is the corresponding author.

910

Jeongyeup Paek

Department of Computer Science and Engineering,
Chung-Ang University,
Seoul, Republic of Korea
jpaek@cau.ac.kr

Object
% Reflected Point
— LiDAR Laser Path
- - Reflection Path

0 — Hallucination Path

-~ Mirror’s Normal

|
1
1
, 1
1
1
'

Fig. 1: Reflection Hallucination

If the reflected 3D point clouds are utilized well, it is
possible to obtain information about the sides or back of
an object that the LiDAR sensor cannot originally detect. In
other words, by understanding the reflection, it is possible
not only to correct LiDAR’s erroneous information but also
to expand the sensor’s perception range and direction. To
this end, this paper proposes the Shadow Boxing Method,
a technique for effectively detecting mirrors and restoring
reflected points beyond them. We evaluate our proposal via
real-time experiments using Ouster’s OS1-32 Rev6 LiDAR
equipment [8].

II. BACKGROUND

In this section, we describe the basics of mirror reflection
and dual return, which are two key concepts for understanding
our shadow box generation method.

A. Mirror Reflection

Flat mirrors induce specular reflection, where the reflection
angle of a light ray equals its incidence angle. When a
LiDAR beam strikes a mirror, its path is altered, but the
sensor fails to recognize this deflection, perceiving the laser
as having traveled straight through the mirror’s surface. This
phenomenon generates an erroneous hallucinated point cloud
behind the mirror, as illustrated in Fig. 1. The trajectory of
this reflected point cloud is governed by precise geometric
rules: the horizontal (azimuthal) angle is preserved, while the
vertical (altitudinal) angle depends on the mirror’s inclination.
We leverage this predictable characteristic to define a Shadow
Box for classifying these reflected points.

ICTC 2025

Object

Second Return
(Low Intensity)

Mirror Surface
— LiDAR Laser Path
First Return Path
Second Return Path

First return
(High Intensity)

Intensity

Second return
(Low Intensity)

First Return
(High Intensity)

(a) Dual Return Path

Fig. 2: Tllustration of the LiDAR dual return mechanism on a mirror. (a) The
path of a single laser beam generating two returns. (b) The resulting graph of

intensity versus time-of-flight for each return.

B. Dual Return

Some LiDAR sensors support dual return mode. Dual return
is a feature that distinguishes multiple return values when a
single laser hits several objects due to reflection or penetration.
This mode can contribute effectively to mirror detection. When
a laser hits a mirror, most of the light is reflected to hit
another object, with only a slight loss of energy. This process,
illustrated in Fig. 2(a), results in the object forming a strong
signal (the first return), while the mirror surface itself creates
a weak signal (the second return).

The method of distinguishing between the first and sec-
ond return varies by hardware manufacturer. In the case of
Ouster [9], multiple signals generated from a single laser
are classified into return types based on their intensity. This
relationship is visualized in Fig. 2(b), where the first return
exhibits a higher intensity despite a longer time-of-flight, while
the second return from the closer mirror surface shows a lower
intensity.

III. DESIGN AND METHODOLOGY

This section describes the design of the step-by-step method
for effective mirror detection and reflected point restoration.

A. Mirror Detection

LiDAR’s dual return mode is actively used for accurate
mirror detection. Although Ouster’s OS1-32 officially supports
dual return, second returns account for a very small proportion,
only 0.4%, of the total points as shown in Fig. 3. In the
visualization, first returns are denoted by blue points, whereas
second returns are indicated by pink points.

However, as described in §II-B, second returns exhibit a dis-
tinct characteristic on mirror surfaces: a dense concentration at
the center. This key feature distinguishes them from the sparse
clusters or noise found in other cases. Thus, even though these
points are few, their density allows us to effectively isolate
them for mirror detection. To implement this, we employ the
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm [10]. This method effectively groups the

1

1

1

1

I

4 @
Time Of Flight

(b) Dual Return Path Graph

@ e

Fig. 3: Second Return Visualization

Algorithm 1 Mirror Plane Detection

Require: Point clouds P; (first return), P, (second return)
Ensure: Mirror pose M (center, normal, extent) or null
1: Clusters < DBSCAN(P, eps, min_pts)
2: for each cluster C' in Clusters do
3: if len(C) < points_threshold then
4 continue
5. end if
6: planarity < CalculatePlanarityPCA(C)
7. if planarity < planarity_threshold then
8 PlaneModel, Inliers <— RANSAC(C, dist_thresh)
9 if len(Inliers) > inlier_threshold then

10: PlaneModel +— RefinePlaneWithNeighbors(Py, Inliers)
11 M <+ ComputePoseFromPlane(PlaneModel)

12: return M

13: end if

14: end if

15: end for

16: return null

densely concentrated second return points, while simultane-
ously filtering out sparse noise and clusters with an insufficient
number of points.

Next, we search for a plane at the location of these refined
second return points. We assume the mirror is rectangular and
has a frame. In this case, a plane will exist where the first
return forms the boundary and the second return forms the
surface. Therefore, we use PCA to calculate the planarity of
the point cloud at the second point locations to further reduce
candidates, and then use the RANSAC Algorithm to finally
find and classify the mirror [11], [12].

Once the mirror is classified within the point cloud, the next
step is to determine the front and back of the mirror. Since the
front of the mirror is closer to the sensor, the direction facing
the mirror on the plane is set as the front, and the opposite
direction is set as the back. The back-side information thus
obtained contributes to the creation of the shadow box.

911

Fig. 4: Shadow Boxing Result

Object
Reflection Point
— LiDAR Laser Path
— Hallucination Path
[] Mirror

! Shadow Box

Fig. 5: Shadow Box’s Direction

B. Finding Reflection Points

After obtaining the back-side directional information, the
next task is to distinguish between reflected points and ordi-
nary points in the point cloud that exists behind the mirror.
§II-A established that no object’s point cloud can normally be
generated if we follow the laser’s path into the space behind
the mirror.

Applying this concept, we create a bounding box in the
direction of the laser’s path behind the mirror and consider the
point cloud inside this box to be reflected points. The width
and height of the bounding box are determined based on the
size of the mirror surface, as illustrated in Fig. 4. However,
there are cases where the bounding box cannot cover all points.
In such cases, we are able to restore points outside the box
using a Kd-Tree [13].

The next important point is the filt of the mirror. If the
mirror is tilted, the reflected points are formed along that
tilt, causing a distortion in the z-axis position. This concept
is visually detailed in Fig. 5 However, the shadow boxing
method has the advantage of being able to effectively detect
this distortion because it forms a bounding box in the space
behind the mirror relative to the mirror’s surface.

C. Filtering and Mirroring Back Point Cloud

After classification, these reflected points are restored to
their original positions, and the existing erroneous points are
filtered out. The Householder Transformation [14] is used to
restore them to their original locations. However, using only
the Householder Transformation cannot effectively restore the

Algorithm 2 Reflected Point Identification

Require: Mirror pose M, Point cloud P;
Ensure: Reflected point cloud Piefected

1: ShadowBox < ConstructSearchVolume (M)
Tinitial < FindPointsInVolume(P, , ShadowBox)
kdtree < BuildKdTree(P;)
Iicighbors <— RadiusSearch(Py, kdtree, linigar,)
Icandidate <~ Iinitial) [neighbors
Pcandidate — Pl [Icandidate]
Prefiected < CullPointsNearMirror(Peyngidates M, deunl)
return Preﬁecled

e A i

distortion caused by the mirror’s tilt. Therefore, for the final
position, tilt interpolation is performed by inverting the z-axis
information of the mirror’s tilt.

Formally, let P,,;, denote the original point to be restored,
P esiorea the final restored point, n = [nz,ny,nz]T the unit
normal vector of the mirror plane (pointing away from the
mirrored surface), and Q a point on the mirror plane (e.g., the
mirror center). Let I be the 3 x 3 identity matrix and k, the
z-axis correction factor.

Step 1: Householder Reflection The Householder reflection
matrix is defined as

H=1I-2nn" (1)

and the reflected position of P,,;, with respect to the mirror
plane is

Preﬂected = H(Porig - Q) + Q (2)

Step 2: Z-axis Tilt Correction To compensate for the dis-
tortion caused by the mirror’s tilt, a correction vector ¢ along
the z-axis is applied:

0 0
Az=—n, -k, c=|0]|= 0 .3
Az —n, -k,

Final Restored Position The final restored point is then
computed as,

Prestured = Preﬂeczed +c
— (I—2007)(Pyse — Q) @
+Q+c.

This formulation ensures that the points reflected by the
mirror are restored to their original 3D positions while simul-
taneously correcting distortions due to the mirror’s tilt.

D. GPU Acceleration

To meet the real-time processing requirements essential
for LiDAR applications, we apply GPU acceleration to the
primary computational bottlenecks of our algorithm. The im-
plementation leverages both Open3D’s tensor-based and Py-
Torch! to execute parallel operations on the NVIDIA CUDA?

'PyTorch, https://pytorch.org/
2CUDA (Compute Unified Device Architecture), https://developer.nvidia.
com/cuda-zone

912

b

(b) Back Vie

(a) Front View

Fig. 6: Environment Setting

platform. The key acceleration points reflected in our current
implementation are as follows:

« DBSCAN Clustering: The second return point cloud is first
converted to an Open3D GPU tensor object. This allows
the DBSCAN clustering to be performed directly on the
GPU, enabling the rapid identification of dense point regions
corresponding to the mirror surface.

« RANSAC Plane Segmentation: For the clusters identified
by DBSCAN, the search for the mirror plane is also accel-
erated using Open3D’s GPU-based RANSAC function.

« Householder Transformation: In the final point restora-
tion stage, the most computationally expensive operation—
the Householder transformation—is implemented using Py-
Torch tensors. The points targeted for restoration are trans-
ferred to the GPU, where the matrix and vector calculations
are processed in parallel before the results are returned to
the CPU.

By offloading these core bottlenecks—clustering, plane
segmentation, and matrix transformations—to the GPU, we
significantly improve the overall throughput of the pipeline,
laying the groundwork for real-time operation.

IV. EVALUATION

The equipment used for the experiment is a single Ouster
0S1-32 Rev6. Additionally, Robot Operating System (ROS)?
and the Open3D* library are used in the process of handling
the point cloud. ROS automatically parses the return values
obtained by the LiDAR, and Open3D allows effective point
cloud processing.

Two experiments are conducted in a typical indoor labora-
tory environment, where a mirror is placed near the LiDAR
sensor to cause specular reflection as shown in Fig. 6. To
verify that the restoration of reflections is effective, we per-
form restoration and detection experiments on various objects
including an air purifier, a duck doll, and a person (Fig. 7).

The first experiment focuses on point cloud recovery. Under
normal conditions, the LiDAR can only detect one side of the
three test objects. By utilizing the mirror’s reflection, we are
able to reconstruct the point cloud of the opposite, non-visible
surfaces. The results of this experiment are presented in Fig. 8.

The second experiment investigates detection under con-
ditions of occlusion. We examine whether the far side of

3Robot Operating System (ROS) , https://www.ros.org/
4Open3D, http://www.open3d.org/

W (c) Blocking Experiment

(a) Air Purifier (b) Duck Doll (c¢) Person

Fig. 7: Experiment Target Objects

(a) Air Purifier Point Recovery

(b) Duck Doll Point Recovery

Fig. 8: Recovery experiment results for three objects. White
points represent first returns, blue points indicate recovered
points, and the red circle highlights the final shape of the
recovered object.

Fig. 9: Blocking experiment result. A red circle highlights
the restored point cloud for the occluded side of the person.

an object could be perceived via reflection even when the
LiDAR’s direct line of sight is obstructed. As shown in Fig. 9,
the sensor is able to effectively detect the occluded person
surface through reflection, confirming the method’s viability
even with a partially blocked sensor view.

Finally, to validate the real-time performance of our method,
we measure the average processing speed in Frames Per

913

TABLE I: Performance Comparison (FPS)

Implementation | Scenario Average FPS
Non-Detection 10.0
CPU-only
Detection 2.7
Non-Detection 10.0
GPU-accelerated
Detection 8.8

Second (FPS) under two distinct scenarios: 1) a baseline
without a mirror present (Non-Detection) and 2) with a mirror
being actively processed (Detection). The experiments are
conducted on a system equipped with an Intel Core i7-
10700F CPU and an NVIDIA GeForce RTX 2060 GPU. The
results, summarized in Table I, highlight the impact of the
computational load and the effectiveness of GPU acceleration.
In the Non-Detection scenario, both implementations operate
at approximately 10.0 FPS, matching the native frequency of
the Ouster OS1-32 sensor. This indicates that the baseline
processing overhead is minimal.

However, a significant performance difference emerges un-
der the Detection workload. The CPU-based implementation’s
performance drops sharply to an average of 2.7 FPS, rendering
it unsuitable for real-time applications. In contrast, our pro-
posed GPU-accelerated version maintains a high frame rate
of 8.8 FPS, successfully processing the data at a rate close to
the sensor’s output. This represents a performance increase of
over 3.2 times under load and confirms that GPU acceleration
is crucial for the real-time viability of our method.

The experimental results validate that our proposed shadow
boxing method not only successfully utilizes reflections to
expand the LiDAR’s detection capabilities, but also achieves
this in real-time thanks to GPU acceleration. This combination
of functional robustness and high performance confirms the
viability of our approach for practical applications.

V. CONCLUSION

In this paper, we restored mirror reflected points to recon-
struct the rear side of objects in 3D point clouds by utilizing
the reflection characteristics of LiDAR lasers. Through real
experiments, it was possible not only to effectively distinguish
reflected points from points behind the mirror, but also to
correct for tilt distortion. However, some limitations exist.
Since only a single 32-channel LiDAR unit was used, the
quantity of second returns varied significantly depending on
the angle of the mirror. This issue can be improved by using
higher-end sensors or multiple sensors [15]. Furthermore,
generalizability of our scheme should be further validated
through more experiments with diverse environments, objects,
mirror types, and LiDARs. As future work, we plan to apply
our scheme to a real vehicular setting. We believe that by
overcoming the limitations of LiDAR sensors with respect
to reflective surfaces, our proposed algorithm will contribute
to the fields of object recognition, SLAM mapping, and
autonomous driving in the future.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
(10]

(11]

[12]

[13]

[14]

[15]

914

REFERENCES

Y. Li and J. Ibanez-Guzman, “Lidar for Autonomous Driving: The
Principles, Challenges, and Trends for Automotive Lidar and Perception
Systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50-61,
2020.

J. Ryu and J. Paek, “Poster: Fast field-of-view expansion for collabo-
rative object detection,” in The 22nd ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys’24). ACM, June
2024.

C. S. Shin, W. Pang, C. Li, F Bai, F Ahmad, J. Paek, and
R. Govindan, “Recap: 3d traffic reconstruction,” in Proceedings of
The 30th Annual International Conference on Mobile Computing
and Networking (MobiCom’24). ACM, Nov. 2024, pp. 1252-1267.
[Online]. Available: https://dl.acm.org/doi/10.1145/3636534.3690691
M. Choi, J. Ryu, Y. Son, S. Cho, and J. Paek, “LiDAR-based Lo-
calization for Autonomous Vehicles - Survey and Recent Trends,” in
The 15th International Conference on Information and Communication
Technology Convergence (ICTC) - Workshop on Big Data and 5G&6G
Communication Networks (IWBCN). 1EEE, Oct 2024, pp. 456—460.
S. Fang and H. Li, “Multi-Vehicle Cooperative Simultaneous LiDAR
SLAM and Object Tracking in Dynamic Environments,” IEEE Transac-
tions on Intelligent Transportation Systems, 2024.

Y. Li, X. Zhao, and S. Schwertfeger, “Detection and Utilization of
Reflections in LiDAR Scans through Plane Optimization and Plane
SLAM,” Sensors, vol. 24, no. 15, 2024.

X. Zhao and S. Schwertfeger, “3DRef: 3D Dataset and Benchmark
for Reflection Detection in RGB and Lidar Data,” 2024. [Online].
Available: https://arxiv.org/abs/2403.06538

Ouster, Inc., “OS1 LiDAR Sensor,” https://ouster.com/ko/products/
hardware/os1-lidar-sensor, accessed: 2025-08-20.

, “Ouster Sensor Docs,” https://static.ouster.dev/sensor-docs/index.
html#, 2025, accessed: 2025-08-20.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD’96). AAAI Press, 1996, pp. 226—
231.

K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Philosophical Magazine, vol. 2, no. 11, pp. 559-572, 1901.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

A. S. Householder, “Unitary triangularization of a nonsymmetric ma-
trix,” Journal of the ACM (JACM), vol. 5, no. 4, pp. 339-342, 1958.
C. Henley, S. Somasundaram, J. Hollmann, and R. Raskar, “Detection
and mapping of specular surfaces using multibounce LiDAR returns,”
Optics Express, vol. 31, no. 4, p. 6370, Feb. 2023.

