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Abstract—Smart factories cannot be detached from wireless
networks, which have become essential elements for real-time
communication and control of various industrial devices. Ac-
curate traffic prediction is indispensable for managing network
resources efficiently, enabling proactive resource allocation, con-
gestion avoidance, and load balancing. In this paper, we conduct
an evaluation based on actual measurement data obtained from
Wi-Fi Access Points (APs) and Automated Guided Vehicles
(AGVs) in a real automobile manufacturing factory. We predict
the AP’s traffic volume using various deep learning models,
including Multi-Layer Perceptron (MLP), Long Short-Term
Memory (LSTM), Transformer, and Graph Neural Network
(GNN) architectures, for future traffic forecasting. Our results
show that the independent models, which are trained for each
AP, effectively capture individual traffic patterns.

Index Terms—Time Series Forecasting, Traffic Prediction,
Deep Learning, Wi-Fi, Wireless Network

I. INTRODUCTION

The evolution of wireless communication technologies,
such as Wireless Local Area Networks (WLAN) and cellular
networks, has enhanced flexible connectivity. This improves
our convenience in daily life and boosts productivity in the
industrial domain. In smart factory environments, autonomous
transport systems such as AGVs and Autonomous Mobile
Robots (AMRs) are used to carry heavy objects. Many afore-
mentioned machines are controlled through wireless networks
such as Wi-Fi and private 5G. Fig. 1 illustrates the AGV’s op-
eration scenario in a smart factory. AGVs are used to transport
heavy objects, such as car parts, within the factory. Efficient
management of wireless network resources is essential for
reliable and effective factory operation, and to ensure the stable
operation of these machines.

For intelligent network management, many network mon-
itoring tools and control platforms, such as Cisco Meraki
Go [1], Ruckus SmartZone [2], are widely used. Recently,
many machine learning (ML) and deep learning (DL) tech-
niques have been increasingly applied to wireless network
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Fig. 1: Use cases of AGVs. AGVs are used to carry heavy objects
in the factory. AGVs are controlled by a wireless network, and they
communicate with APs using Wi-Fi 6.

management systems. These are being actively researched to
improve resource allocation of wireless networks and optimize
network performance. Among these, network traffic prediction
has emerged as a key technology for enabling more efficient
management of wireless network resources. The predicted traf-
fic values can be utilized in various decision-making processes,
for example, load balancing and resource scheduling. These
will contribute to more reliable network operations, which will
lead to productivity improvement in smart factories.

Various types of research related to network traffic pre-
diction have been conducted, particularly focusing on non-
industrial wireless cases [3], [4]. In this paper, we focus on
traffic prediction in industrial Wi-Fi with various deep-learning
models. Our contributions are as follows:

e We present a study based on a real industrial dataset
collected from an actual automobile manufacturing factory
environment. These datasets include traffic data from Wi-Fi
Access Points (APs) and dmesg log data from AGVs.

o We conduct evaluations to predict future traffic volume using
various deep learning models, and analyze the performance
of these models in terms of various evaluation metrics (see
§IV).

We aim to provide insights into the practical predictability and

applicability of ML models for traffic forecasting.
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II. RELATED WORK

Sone et al. [4] predicts the traffic load at an AP us-
ing real measurements from enterprise Wi-Fi network. They
used probabilistic models such as Seasonal AutoRegressive
Integrated Moving Average (SARIMA) and Holt-Winters.
They also proposed a method using a time series forecasting
model such as LSTM, Gated Recurrent Unit (GRU), and
one-dimensional Convolutional Neural Network (1D-CNN).
They further enhance prediction accuracy through a combined
architecture that incorporates spatial feature extraction via 2D
CNNs and temporal characteristics using Recurrent Neural
Network (RNN)-based models such as LSTM and GRU.
Shaabanzadeh er al. [3] updated the method using more
models such as AutoRegressive Integrated Moving Average
(ARIMA) and Transformer models.

However, most prior studies on traffic prediction are for non-
industrial environments. Moreover, they typically use coarse-
grained sampling intervals (e.g. 15 minutes), whereas our
study employs fine-grained measurements collected every 90
seconds. To the best of our knowledge, there is a lack of
research that applies traffic prediction techniques to real-
world factory Wi-Fi environments. We address this gap by
conducting an evaluation using actual data collected from an
operational factory. Our goal is to provide some insights that
can support factory network management and contribute to
more stable and efficient industrial operations.

III. DATASET & CHARACTERISTICS

We use a dataset collected from an actual car manufacturing
environment. In factory environments, AGVs transport mas-
sive objects and communicate with APs using the 802.11ax
(Wi-Fi 6) standard. There are a few tens of APs deployed in
the factory, and several tens of AGVs that are connected to
the APs. The dataset was collected in real-world production
environments, where AGVs are carrying heavy materials as
part of the production process. The dataset used in this study
comprises two primary sources:

o AP logs: includes AP’s traffic volume (rx, tx bytes), client
number (AGVs number), and channel-related data (e.g. 90
seconds moving average airtime total and airtime busy).

¢ AGV dmesg logs: Handover scanning log and connections
log generated by the AGV’s operating system.

We collected the aforementioned data over a period spanning
from December to March, and the AP log’s sampling rate
is 90 seconds. Because traffic variation is not significant
during the non-operational hours, and this research focuses on
the efficient operation of a manufacturing environment, our
prediction target only includes the operational hours.

One key characteristic of the dataset is that AP’s traffic
(rx, tx bytes) does not exhibit strong long-term temporal
dependencies. This is supported by the sample autocorrelation
function (ACF) [5] plot, which shows that short-term patterns
are more prominent. Fig. 2(a) shows the ACF plot. So, we
focus on short-term traffic prediction. Specifically, we aim to
predict one step ahead of traffic values(i.e., predicting traffic
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(a) ACF of AP’s received traffic (rx bytes). High autocorrelation at
low lags indicates short-term dependencies.
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(b) Pearson correlation of AP02’s numeric values. rx bytes, tx bytes,
and client number are highly correlated.

Fig. 2: Autocorrelation of traffic and inter-feature correlation pat-
terns in AP numeric value.

volume 90 seconds into the future). Another characteristic of
the dataset is that the volume of the traffic is highly correlated
with the number of clients connected to the AP. Fig. 2(b)
shows the Pearson correlation of numeric values.

We use this dataset in our prediction model design and
evaluations.

IV. MODEL ASSESSMENT & BENCHMARKING
METHODOLOGY

In this section, we present the experimental setup and
results of our traffic prediction evaluation. We evaluate the
performance of various deep-learning models using the dataset
described in §III. To preprocess the input features, we utilized
several normalization schemes, including min-max scaling, Z-
score normalization, and IQR-based scaling, for input feature
preprocessing but failed to achieve a satisfactory result. The
validation loss remained nearly constant without a simulta-
neous decrease, and the model outputs collapsed to a single
value (typically the dataset’s mean). Consequently, we applied
a logarithmic transformation using log;,(z) to the traffic
features to reduce skewness and stabilize the variance. The
logarithmic normalization effectively reduced multimodality
and enhanced the stability of the distribution of traffic features.
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We compare the following models in our traffic prediction
evaluation:

e MLP [6]: A basic neural network that receives flattened
features as input. It does not consider temporal or spatial
dependencies, with lack of inductive bias.

o LSTM [7]: A RNN-based model that captures temporal
dependencies by maintaining hidden and cell states across
time steps.

o LSTM Cell [8]: A variant of LSTM that allows step-by-step
processing over hidden and cell state updates at each time
step.

o Transformer [9]: A sequence model that leverages self-
attention mechanisms to capture dependencies across all
time steps, suitable for modeling long-range patterns.

e GAT + LSTM Cell: A hybrid model combining GAT [10]
and LSTM Cell. GAT is used to model spatial relationships
between APs, followed by an LSTM cell to capture temporal
dependencies.

In the case of GNN, we constructed a graph where each
node represents an AP and the edges have two features:
the Euclidean distance between APs and the handover count
between APs due to the AGVs’ movement.

The evaluation metrics we use to assess the performance of
these models are as follows:

e RMSE (Root Mean Square Error): Measures the square root
of the average squared differences between predicted traffic
value (y;) and ground-truth traffic values (¢;).

RMSE =

e MAE (Mean Absolute Error): Represents the average of the
absolute differences between predicted and actual values.

1 — R
MAE =~ [y; — il
=1

o R? Score (Coefficient of Determination): Indicates how well
the regression model has predicted the target values. A value
closer to 1 implies better performance.

R2_1_ ZZ:L:l(yi —4:)°
e (Wi — )2
o MAPE (Mean Absolute Percentage Error). Expresses pre-
diction error as a percentage, calculated by averaging the
absolute percentage differences between predicted and ac-
tual values. To avoid distortion caused by division-by-zero,
data points with zero traffic are not included in the MAPE
calculation.
100% <
MAPE = — Z;
i=

Yi — Ui
Yi

, where y; #0

We also measure the average inference time per sample for
each model to evaluate the computational efficiency of the
models.

TABLE I: Performance comparison of a shared, per-AP models and
graph-aware model including average inference time per sample.

Model RMSE MAE MAPE R®  Time(ms)
Parameter sharing

MLP 1.88 1.08 9.17%  0.856 0.1

LSTM 1.89 1.01 8.63% 0.854 1.0

LSTM Cell 1.88 1.06  9.03%  0.855 14

Transformer 1.89 1.08 8.63%  0.857 1.2

Per-AP (no parameter sharing)

MLP 1.58 0.65 6.50%  0.897 1.5

LSTM 1.53 0.62 5.86%  0.903 3.8

LSTM Cell 1.53 0.61 594%  0.903 16.6

Transformer 1.56 0.70 6.70%  0.900 104
Graph aware model

GAT+LSTM cell 1.53 0.62 6.00%  0.903 1.6

V. EVALUATION RESULTS

In this section, we explain our evaluation environment and
the results of our traffic prediction evaluations.

A. Evaluation Setup

Evaluation was conducted on both the NVIDIA RTX 4090
GPU and RTX 4070 SUPER. We used sequence models using
PyTorch [11] modules, such as LSTM and Transformer, and
GNN models using PyTorch Geometric [12] modules. We
used CUDA 11.8 with PyTorch 2.3.0 (+cull8) and PyTorch
Geometric 2.6.1. We chose an input sequence length of 10
time steps. All the sequence models were configured with two
layers and a hidden dimension of 128, and the dropout rate
was set to 0.1. In the case of GAT + LSTM cell model, we
used one GAT layer with four heads and one LSTM cell layer
with a hidden dimension of 128.

All models were trained using the Adam optimizer with a
learning rate of le-4 and weight decay of le-5. The batch
size is set to 32, and training is performed for 200 epochs
with early stopping based on validation loss (patience = 30).

B. Evaluation Results

With the aforementioned setup environment, as described
in V-A, we conducted evaluations to predict the future traffic
values of dozens of APs using the above-mentioned models.
Table I summarizes the averaged performance metrics obtained
from traffic predictions across dozens of APs. Fig. 3 shows the
ground truth and prediction results for two selected APs (APO1
and AP02) among dozens, focusing on the time index range
of 500-1000.

We conducted evaluations under two different scenarios:
shared model case and independent model cases. In the shared
model case, a single model was trained to predict the traffic
of all APs simultaneously. Otherwise, in the case of the
independent cases, we trained a separate model, allowing each
model to focus on AP’s traffic characteristics. The results show
that the independent model case outperforms the shared model
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Fig. 3: (a) Traffic prediction for APO1, (b) APO2 (time index
500-1000). The x-axis represents time indices from a test dataset,
showing a subset of the factory operation hours in March 2025.
Each sample point is collected at 90-second intervals. The y-axis
shows the log-transformed traffic values.

case. RMSE loss has reduced by approximately 0.3, MAE loss
has reduced around 0.3 ~ 0.4, and MAPE has improved by 2
~ 3% . The results indicate that the independent model case
is more effective because it can consider AP’s unique traffic
patterns. However, the limitation of the parameter sharing
model just considers the average and most dominant traffic
patterns of all APs. But these models are cost-effective and fast
at training and interference time because they share parameters
across all APs

Adding GAT to the LSTM cell model shows a similar
performance to the independent case of the LSTM cell.
Fundamentally, a GNN extracts embeddings for all nodes, and
thus, models can inherently consider the independent traffic
patterns of each AP. Because we use a Discrete Time Dynamic
Graph (DTDG) for GNN, it cannot capture the asynchronous
behavior of AGVs, which leads to a similar performance to
the independent case of the LSTM cell.

VI. SUMMARY AND FUTURE WORK

In this paper, we evaluated the ability to predict future traffic
intensity on Wi-Fi 6 networks in an industrial environment. We
used a dataset collected from an actual industrial environment,
evaluated the performance of various deep learning models and
conducted multiple evaluations to assess their performance.
Our evaluation shows that maintaining an individual model
for all APs is more effective than training a single model.
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However, the current implementation does not yet perform
full batch processing, so the evaluated results are quite con-
servative and could improve with proper batching. Another
limitation of our study is restricted to discrete time series
data, and we cannot reflect the asynchronous pattern of the
AGV’s movement. Future work will focus on addressing these
limitations by using continuous time series data, such as han-
dling continuous-time dynamic graphs, for example, TGN [13]
and TGAT [14] for improving the prediction performance.
Additionally, precise traffic forecasting can be utilized for
anomaly detection by comparing the predicted value with the
actual traffic volume, referred to as forecasting-based anomaly
detection. This would be our next step.
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