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Abstract—With the rapid advances in wireless communication
technologies that drive Industry 4.0 and pervasive automation,
an ever-increasing share of factory operations is now performed
by machines. Automated Guided Vehicle (AGV) is one of the
wide-spreading technologies, and has become a cornerstone
of modern smart factories, streamlining in-plant logistics and
directly impacting on overall manufacturing productivity. As
more facilities deploy AGVs, reliable wireless connectivity has
emerged as a critical prerequisite for safe and efficient operation.
However, field observations of production line AGVs operating
over Wi-Fi wireless network reveal recurrent phenomena that
point to latent communication failure. This paper defines these
anomalies, explores a spectrum of detection strategies, and
through a comparative study, identifies an anomaly detection
approach well suited to factory Wi-Fi environments.

Index Terms—Automated Guided Vehicle (AGV), Software
Defined Factory (SDF), Anomaly Detection, Multivariate Time
Series, Industrial Wireless, Industry 4.0

I. INTRODUCTION

Factory automation is undergoing a rapid transformation un-
der Industry 4.0, and the horizon has already extended toward
software-defined factory (SDF), or software-defined manufac-
turing (SDM) [1], [2]. Among the technologies that underpin
this transformation, automated guided vehicles (AGVs) have
moved from pilot deployments to indispensable shop-floor
assets, taking charge of material handling, and delivery. To
perform tasks safely and efficiently, an AGV must exchange
time-critical commands, status reports, and sensor data with
higher-level controllers. To execute such tasks, AGVs must
maintain continuous communication with a central controller
over the wireless network to receive control commands, mak-
ing low latency links indispensable. If an AGV experiences
high latency or, worse, loses connectivity, its operation may
halt. This problem could leads disrupting part or all of factory
operations and resulting in severe productivity losses. Indeed,
according to prior works [3]–[5], low latency is suggested as
one of the key challenges of AGV deployments on factories.

Provisioning a wireless environments for AGVs can be
broadly categorized into two approaches: cellular-based meth-
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Fig. 1: Overview of AGV disconnection scenario.

ods (LTE/5G) and Wi-Fi-based methods (Wi-Fi 6/6E). While
private 5G promises ultra-reliable low latency communication
(URLLC) under licensed spectrum, Wi-Fi remains attractive
for its low cost and ease of deployment and management,
as well as seamless integration with existing infrastructure.
During field measurements in a production plant that relies on
Wi-Fi, as shown in Fig. 1, we repeatedly observed intermit-
tent disconnections between AGVs and access points (APs).
Because link disconnection can trigger cascade into process
delays, early detection and mitigation of such disconnections
are essential.

AGVs and APs continuously generate diverse metrics such
as RSSI, bitrate, and network throughput, and anomaly detec-
tion in industrial sensor data remains a challenging research
problem [6]. One of the methods for detecting disconnections
using these streams is to treat the problem as binary clas-
sification. Well-established gradient boosting models such as
XGBoost [7] or LightGBM [8] can deliver high accuracy with
reasonable computational overhead, provided that represen-
tataive positive samples are available. But when the feature
space grows complex and the class imbalance gap widens,
such supervised classifiers could suffer due to too few fault
samples to capture their patterns. Because of this limitation,
recent work favors unsupervised or self-supervised anomaly
detection models [9]–[12] that train only on normal data. Each
method carries its own trade-offs, and the choice depends on
the statistics of the data and the constraints of the deployment
environment.
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TABLE I: Total dataset analysis

Disconnection number 1164 times
Total disconnection time 5,489 sec (2,745 timesteps)
Data size (Timestep) 336,292,330 timesteps
Disconnection ratio 0.00082 %

The contributions of this paper are as follows:

• Analyze real-world traces from AGVs and Wi-Fi APs in a
real car manufacturing factory and quantify their disconnec-
tion phenomena.

• Evaluate both supervised and unsupervised methods for
anomaly detection, and identify the method that best bal-
ances accuracy and computational overhead.

II. RELATED WORK

There are extensive efforts to guarantee the seamless op-
eration of AGVs on the factory floor [13]–[15]. Ohori et
al. [13] proposed a method for predicting wireless link quality
to detect and avoid AGV communication failure due to AP
selection with additional sensors that measure communication
metrics. Shi et al. [14] proposed an algorithm that dynamically
allocates time slots under strict ordering constraints, ensuring
reliable AGV communications. However, these approaches
require either additional hardware or a complete overhaul of
mechanism, making large-scale deployment and test in real-
world AGV fleets highly challenging. Consequently, this paper
focuses on the approaches that leverage the telemetry data
already produced by AGVs and APs to predict, detect, or
prevent communication failures without modifying the control
stack.

By modeling the telemetry generated by AGVs and APs as
a multivariate time series, we can apply state-of-the-art time
series anomaly detection techniques directly to factory envi-
ronments. Su et al. [10] proposed stochastic recurrent neural
network model utilizing variational autoencoder to calculate
reconstruction error of time series. Nizam et al. [12] proposed
two-stage LSTM autoencoder model to detect extremely rare
anomalous events on Industrial Internet of Things (IIoT)
streaming data. Zhao et al. [9] proposed parallel graph at-
tention network with simple forecasting-reconstruction hybrid
model that trying to capture the relationships between different
time series. While these models achieve impressive accuracy
on public datasets such as server machine dataset (SMD) or
secure water treatment (SWaT) dataset, their suitability for
latency-sensitive factory Wi-Fi telemetry remains unexplored.
In this paper, approaches proposed in prior works will be tested
and evaluated on real-world manufacturing AGVs.

III. METHODOLOGY

This section presents data analysis, labeling methodology,
and the approaches evaluated.

(a) CDF of AGV latency.

(b) Average latency around disconnection.

Fig. 2: Statistics of latency data. For clairity, values are clipped on
200 ms. Fig. 2(b) suggests that high-latency events can be triggered
by disconnections.

A. Data Analysis

The data were collected from a real car manufacturing
factory in United States for over 108 days from December
2024 to March 2025, involving more than 40 APs and 80
AGVs in operation. Since disconnections exceeding 3 seconds
noticeably disrupt factory operations, we counted only such
events and the result is shown in Table I.

Although disconnections occur at least once per day and
constitute a significant source of productivity loss, the corre-
sponding dataset contains only a handful of examples, making
it too sparse for direct use in model training. Consequently,
disconnections must be detected through indirect indicators.
The key indicator is round-trip latency between an AGV and
its AP. Fig. 2(a) shows that in the majority of scenarios,
the latency remains under 20 ms. However, there are clearly
instances in which the latency exceeds 100 ms. As shown in
Fig. 2(b), latency becomes highly unstable immediately before
and after each recorded disconnection. This escalation reflects
a surge in packet loss rate, providing a reliable warning of an
impending communication failure.

Another informative signal is the occurrence of Wi-Fi
roaming events. Analysis revealed that approximately 27% of
all disconnections and up to 81% of severe disconnection cases
exceeding 6 seconds are tightly coupled to Wi-Fi roaming
failures. Therefore, roaming events which have clear relation-
ship with disconnections were also treated as anomalies and
included in our tests.

B. Approaches

Two approaches are tested and compared on collected
dataset. Most edge devices, including AGVs, are constrained
in memory and compute. Therefore, a lightweight binary
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TABLE II: Result of anomaly detection (P : precision, R: recall).

Binary Classifier [7] Deep Learning [9]
Anomaly F1 P R F1 P R

Roaming 0.92 0.87 0.97 0.86 0.76 0.99
Latency 0.63 0.79 0.52 0.77 0.72 0.84

All 0.83 0.85 0.81 0.88 0.84 0.93

classifier becomes an attractive choice. Among the binary clas-
sification algorithms, ensemble methods, especially algorithms
based on Gradient Boosting Decision Tree [16] are the most
widely adopted and effective in practice. Several classifiers
such as AdaBoost [17], XGBoost [7] and LightGBM [8]
were evaluated on the collected dataset. XGBoost achieved the
highest performance and was therefore selected as the baseline
model for comparison with the deep learning approach.

A second possible approach is leveraging contemporary
deep learning techniques, which have become central to
anomaly detection studies. Accurate anomaly detection de-
pends on a powerful representation of multivariate time series.
Graph attention embeddings are particularly attractive because
they automatically learn dependencies between features, en-
abling the model to detect inter-feature anomalies effectively.
Consequently, one of the state-of-the-art models, MTAD-
GAT [9] has been adopted as the deep learning baseline1.

IV. EVALUATION

Selected baseline models are trained on the data of a single
AGV and their performance is compared in this section. All
experiments were conducted on a workstation with an Intel
Core i9-9900k CPU, Nvidia RTX 2080 with 8GB VRAM,
and 32GB RAM. Operating system was Ubuntu 20.04.6 LTS,
running python 3.11 and CUDA 11.8. Hyperparameters such
as window size are tuned using a grid-search strategy. Three
input features were used, namely received signal strength
indicator (RSSI), bitrate, and the bytes transmitted by AGV.
Evaluation was conducted using F1 score, with point adjust-
ment as proposed by Xu et al. [18].

The experimental results are summarized in Table II, reveal-
ing the distinct strengths of each model across the evaluated
metrics. On the dataset labeled by Wi-Fi roaming events,
the binary classifier model significantly outperform the deep
learning model, likely because roaming exhibits consistent and
distinctive patterns. In contrast, on the dataset labeled by high-
latency events and on the dataset labeled by both roaming
and latency criteria, the deep learning model demonstrated
superior performance. High-latency events arise from a variety
of underlying causes and manifest heterogeneous patterns,
which makes detection complex. This complexity explains
why the deep learning model’s ability to learn intricate feature
relationships gives it an advantage in these cases. Table III
presents the training and inference times for each model.
Under a real-time streaming anomaly-detection scenario, it
demonstrates that inference times differ roughly between the

1https://github.com/ML4ITS/mtad-gat-pytorch.git

TABLE III: Training and inference time of each baseline model.

Binary Classifier Deep Learning
Training (sec) 3.84 942
Inference (ms) 0.25 2.49
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(a) Labeled by latency.
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(b) Labeled by roaming.
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(c) Labeled by latency and roaming.

Fig. 3: Sample results of anomaly detection using a deep learning
method on each labeled dataset. Values are normalized between 0
and 1. Red, blue, and green lines denote RSSI, bitrate, transmitted
bytes, respectively. Red and blue shaded regions indicate ground
truth and predicted anomalies, respectively.

two approaches. Considering typical sampling rates and the
constrained edge device resources, this results underscore the
importance of model compression or light-weight strategies
when deploying deep learning based models.

Additionally, it turned out that false positives in the deep
learning model on latency-labeled data were strongly affected
by roaming events. Fig. 3 shows the sample result of deep
learning method. In Fig. 3(a) and Fig. 3(b), false positives
occurred at the locations labeled for the other event in each
case. Furthermore, when both roaming and high-latency events
were treated as anomaly, the model successfully detected
anomalies that had gone undetected previously. This indicates
that the model confuses the Wi-Fi roaming events with high-
latency situations, underscoring the need for a model capable
of distinguishing genuine high-latency faults from routine
roaming behavior.

V. CONCLUSION

In this paper, we analyzed real-world manufacturing data
from a factory, and explored methods for detecting AGV
communication failures within factory Wi-Fi environment.
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Comparative experiments demonstrated the detection capabili-
ties and respective strength of each approach across datasets la-
beled by high-latency and Wi-Fi roaming events. We validated
the effectiveness of the deep learning approach under general
conditions and identified its remaining weaknesses. Future
work will focus on classifying which labeled events actually
lead to disconnections and on developing a model capable of
distinguishing genuine high-latency fault from routine Wi-Fi
roaming events.
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