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Abstract—As the use of 3D point cloud data increases in
applications such as autonomous driving, augmented reality, and
robotics, there is a growing need for technologies to process this
data in real-time while minimizing storage requirements. Since
the efficiency of subsequent processing is highly dependent on
the size of these datasets, there is growing research on point
cloud reduction that effectively reduces points while preserving
essential features. However, traditional methods often lack of
considering feature loss, while 3D curvature-based and deep
learning-based methods, though more accurate, typically involve
high computational costs that challenge real-time processing. To
address these challenges, we propose binplanar 2D curvature
(B2DC), a novel point cloud reduction algorithm which projects
3D data onto two 2D planes. Unlike prior works, B2DC balances
feature preservation and computational efficiency by leveraging
2D curvature to retain significant features while effectively
reducing complexity. Both qualitative and quantitative results
demonstrate that B2DC is about 30% faster compared to the
3D curvature-based approach while achieving over 90% feature
preservation accuracy.

Index Terms—Point Cloud Reduction, Curvature, Voxel-Grid,
2D Projection, Kdtree

I. INTRODUCTION

3D sensor data is being increasingly utilized across vari-
ous fields, including autonomous driving, augmented reality,
and robotics. One of the most prominent applications is
autonomous driving, where LiDAR sensors are commonly
used to generate 3D point cloud data. Point cloud data is
characterized by its large volume due to the extensive number
of points it contains, leading to considerable data size. Nu-
merous studies have explored various tasks using point cloud
data, such as compression [1], registration [2], [3], and object
detection [4], [5]. However, the performance of these tasks is
highly dependent on the size of the dataset, as larger datasets
require significantly more processing time and computational
resources. As 3D sensor technology advances, point cloud
data is becoming more detailed and larger. Consequently,
these growing datasets pose significant challenges for real-
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(a) Stanford Bunny Data (b) OPV2V LiDAR Data

Fig. 1: Representative 3D point cloud data

time processing and storage, especially in resource-constrained
environments like embedded systems in autonomous vehicles.

Given these constraints including memory, bandwidth, and
computational capacity, there is a pressing need for efficient
point cloud reduction algorithms. Efficient point cloud reduc-
tion must not only reduce data size but also preserve essential
features to ensure that critical information is retained and
subsequent processing tasks remain unaffected. This is crucial
for managing large datasets, such as those depicted in Fig. 1
while enabling real-time processing and optimizing the overall
performance of point cloud-based applications.

The critical challenges in point cloud data reduction are
balancing computational efficiency and preserving essential
features to avoid issues in subsequent processing stages.
Traditional mesh-based methods [6] are prohibitively imprac-
tical due to their excessive computation time. Consequently,
point-based methods have become more prevalent in recent
years. State-of-the-art methods such as Farthest Point Sam-
pling (FPS) and Random Sampling (RS) often struggle with
their capacity to adequately account for point features. While
curvature-based methods [7], [8] can effectively preserve fea-
tures by reflecting the geometric properties of surfaces or
curves, they suffer from high computational costs.

In this paper, we propose a biplanar 2D curvature (B2DC)
to overcome the limitations of previous methods. Our method
can effectively reduce point cloud data size by projecting
3D points onto two 2D planes, leveraging 2D curvature. By
reducing the dimensionality of the problem, B2DC not only
lowers computational complexity compared to 3D curvature-
based method but also achieves advanced feature preservation
to FPS and RS while significantly reducing processing time.
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Fig. 2: The flow of B2DC
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Fig. 3: Biplanar 2D projection

R

Fig. 4: 2D curvature with three points

II. RELATED WORK

This section discusses the related prior works in the litera-
ture on point cloud reduction and point cloud applications.

A. Point Cloud Reduction

Point cloud reduction is a method to reduce the number of
points in a point cloud data while retaining essential features
and structures such as corners, edges, and high curvature area.
There are broadly two categories: mesh-based and point-based
methods. Mesh-based methods are outdated and are not com-
monly used because of intensive computational requirements.
As a result, recent research predominantly focuses on point-
based methods, which can be further divided into geometric
methods and deep learning-based methods. A state-of-the-art
method is FPS which iteratively samples the farthest point
and updates distances. It can evenly distribute points across
the entire space of a point cloud, but it does not sufficiently
take into account the features of the data. Additionally, since
it requires continuous distance calculations, it can be compu-
tationally expensive and time-consuming. RS is also a widely
used method. This is easy to implement and computationally
efficient because it simply selects points randomly according
to a desired ratio. However, RS does not account for the
features of the data at all.

To address these issues, several approaches have been
proposed. Voxel-grid-based method [9] involves dividing the
data into a voxel grid and selecting a representative point for
each voxel using algorithms such as a median filter. Clustering-
based method [10] applies k-means clustering and then uses
existing techniques such as FPS for each cluster. Curvature-
based method [8] performs reduction by calculating Gaussian
curvatures and mean curvatures from the principal curvature
in 3D space, using these curvature measures as the basis
for the reduction process. While these methods provide the
best feature preservation among the previously mentioned
methods, they are limited by their high computational cost.
While the above methods strive to preserve features, they
either involve high computational costs or still fall short of
adequately preserving features.

Recently, approaches utilizing deep learning approaches
have been actively proposed [11], [12]. These methods demon-
strate high accuracy with less feature loss. However, they
are often considered unsuitable for preprocessing due to their
computational complexity and other limitations.

B. Point Cloud Application

Recently, various applications have been developed utilizing
point cloud data. These applications may also apply point
cloud reduction as a preprocessing step.

Point cloud compression is a method for encoding point
cloud data more efficiently for communication between de-
vices. The MPEG group has even proposed a standard for
point cloud data known as G-VCC [1]. Point cloud registration
and fusion are techniques used to align and merge different
point cloud datasets into a unified representation. F-Cooper [2]
performs fusion by first dividing the point cloud into voxels,
and then extracting features from each voxel to guide the
fusion process. Object detection is a process for identifying
and classifying objects in 3D space using point cloud data.
VoxelNet [5] revolutionizes point cloud processing by convert-
ing raw point clouds into a voxel grid representation. It adopts
a point cloud reduction method known as RS. PointPillars [4]
introduces a novel pillar-based representation, where the 3D
point cloud is divided into vertical columns or pillars each
representing a segment of the scene. PointNet++ [13] is a deep
learning network that enhances 3D point cloud processing
through a hierarchical approach, capturing both local and
global features for improved understanding and classification
of complex structures. It employs a point cloud reduction
method known as FPS.

III. BIPLANAR 2D CURVATURE (B2DC)

In this section, we introduce the biplanar 2D curvature-
based point cloud reduction to achieve an improved balance
between feature preservation and computational efficiency.

Existing methods are often hindered by high computational
time and resource consumption. FPS and RS frequently over-
look significant features, while 3D curvature-based methods,
although effective for feature preservation, are limited by
their high computational costs. To handle this, we propose
leveraging 2D curvature to reduce computational complexity.
Calculating curvature in 3D requires extensive computation,
whereas performing these calculations in 2D significantly
reduces the computational load. Our goal is to achieve effi-
cient reduction while maintaining a balanced preservation of
detailed information. Instead of representing the data through
sampling of existing points, which does not inherently adjust
the ratio of data points, our approach adjusts the voxel grid
size to control the sampling ratio without altering the spatial
positions of the points.
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(a) FPS (b) RS
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Fig. 5: Reduction results for Stanford Bunny dataset

(a) FPS (b) RS

(c) 3D Curvature (d) B2DC

Fig. 6: Enlarged foot of the Stanford Bunny dataset

B2DC involves a sequence of the following steps; biplanar
2D projection, calculate 2D curvatures, calculate mean curva-
tures, and voxel-grid point cloud reduction (Fig. 2).

First, we perform a biplanar 2D projection by mapping
each point onto the XZ and YZ planes (Fig. 3). In other
words, it simply means that only two out of the three XYZ
coordinates are used at a time. Using only a single plane would
be insufficient for capturing the global curvature information
necessary to represent comprehensive features. Conversely,
utilizing all three planes would lead to unnecessary complexity
and computational overhead. By employing two orthogonal
planes, our method strikes a balance between computational
efficiency and feature preservation. This biplanar strategy
mitigates the computational burden associated with a three-
plane projection while ensuring sufficient feature information
is retained for precise data representation.

Next, we calculate 2D curvatures for each plane separately.
To determine the curvature in 2D, we use the three-point
method (Fig. 4). This involves applying a kdtree-based k-
nearest neighbors (K-NN) algorithm to find the two nearest
neighbors for each point. We then compute the curvature as the
reciprocal of the radius of the circle that passes through these
three points. Projecting onto 2D planes can simplify the K-NN
process, as the kdtree-based K-NN algorithm operates faster
in 2D due to the reduced dimensionality. Additionally, the 2D
projection eliminates the need for the complex differentiation
and matrix operations required for 3D curvature calculations,
simplifying the process to computing only the radius of the
circle defined by the three points. Following this, we compute
the mean curvature by averaging the curvatures obtained from
the two planes.

Finally, we apply voxel-grid point cloud reduction by di-
viding the point cloud into a uniform voxel grid. Within each
voxel, we retain the point with the highest mean curvature and
discard the others.

IV. EVALUATION

In this section, we evaluated the accuracy and processing
time of B2DC with other three widley adopted point cloud
reduction methods. For the comparison, accuracy was assessed

(a) FPS (b) RS

(c) 3D Curvature (d) B2DC

Fig. 7: Reduction results for OPV2V LiDAR dataset

based on how closely the preservation of feature points
matched that of the 3D curvature-based method, which is used
as a baseline due to its established performance in this area. We
used an AMD Ryzen 5 7500F with 16GB of RAM, along with
the Stanford Bunny and OPV2V [14] datasets. Stanford Bunny
is a single 3D model dataset, while OPV2V is vehicle data
generated through CARLA simulation (Fig. 1). Both datasets
are widely used in the field of 3D point cloud processing.
Stanford Bunny data have relatively consistent and higher
density, allowing for the use of a smaller voxel size, while
OPV2V data tend to be sparse and have highly variable point
density, requiring a larger voxel size during processing. In
terms of point reduction, the Stanford Bunny dataset is reduced
from 35,947 points to 2,825 points, achieving a reduction rate
of 92.1%. Similarly, the OPV2V dataset was reduced from
57,069 to 7,950 points, reflecting an 86.1% reduction rate.

For qualitative evaluation, we compared the result images
(Figs. 5 to 7). Fig. 6 shows a enlarged version of the foot of
the Stanford Bunny (Fig. 5), while Fig. 7 displays a magnified
section of the OPV2V LiDAR dataset focusing on the areas
with a high visibility of vehicles. FPS tends to maintain a
uniform point density effectively, but it does not consider
important features such as flat area and high curvature area
compared to curvature-based method. RS, due to its random
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Stanford Bunny OPV2V LiDAR

FPS 1.28 s 8.86 s
RS 0.001 s 0.002 s

B2DC 0.13 s 0.19 s
3D Curvature 0.18 s 0.27 s

TABLE I: Processing time comparison for Stanford Bunny and
OPV2V LiDAR datasets

Stanford Bunny OPV2V LiDAR

w/
tolerance

w/o
tolerance

w/
tolerance

w/o
tolerance

FPS 84.34% 8.57% 86.95% 45.79%
RS 83.55% 7.47% 82.16% 14.23%

B2DC 90.13% 16.75% 91.45% 53.25%

TABLE II: Accuracy comparison for Stanford Bunny and OPV2V
LiDAR datasets relative to 3D curvature-based method as the 100%
baseline.

selection of points, does not account for features at all, a
limitation that is particularly evident in Fig. 7b. The 3D
curvature-based method preserves high curvature area well,
and also there is no substantial difference in visual compared
to our proposed B2DC method.

For quantitative evaluation, we measured the time required
for point cloud reduction and assessed accuracy against the 3D
curvature-based method. In Table I, we can observe that FPS
requires the longest time for processing because it calculates
distances at each step. On the other hand, RS is the fastest
method by far as it simply selects points randomly. B2DC
shows a significant improvement in processing time over 3D
methods, reducing processing time by 27.78% on the Stanford
Bunny dataset and 29.73% on the OPV2V dataset. Although
there is no significant difference in accuracy compared to other
methods, B2DC achieves a meaningful reduction in processing
time. Table II presents the proportion of points that are either
within a certain tolerance of each other or are exactly identical
when sampled, based on the 3D curvature-based method. The
tolerance values are selected based on the density of the dataset
and the average inter-point distance. The results indicate that,
for both datasets, accuracy is highest for B2DC, followed by
FPS and RS in that order.

Summarizing the experimental results, our proposed B2DC
method demonstrates feature preservation accuracy compara-
ble to that of the 3D curvature-based method while achieving
approximately 30% faster processing speeds compared to the
3D curvature-based method.

V. CONCLUSION

We proposed a novel method, B2DC for point cloud data
reduction using biplanar 2D curvature, effectively addressing
the challenge of balancing computational efficiency with the
preservation of essential features. By projecting 3D points

onto two 2D planes and leveraging curvature in these re-
duced dimensions, B2DC significantly reduces computational
complexity compared to traditional 3D curvature-based ap-
proaches, with minimal accuracy loss. Experimental results
demonstrated that our approach achieves superior performance
in reducing point cloud size, unlike RS, while maintaining the
integrity of critical features, outperforming existing methods
such as FPS and the 3D curvature-based method in terms
of computational efficiency. This work contributes to the
ongoing efforts to optimize point cloud processing, especially
in applications requiring real-time performance, and opens up
new avenues for further research in feature-preserving data
reduction techniques. Moreover, applying our method has the
potential to develop new optimized point cloud registration and
object detection algorithms for applications requiring a balance
between computational load and feature preservation.
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