
TCP-do: Enhancing TCP Performance with
Delay Oscillation Frequency Analysis

Sueun Lee, Chaeyeong Lee, Jeongyeup Paek

Department of Computer Science & Engineering, Chung-Ang University, Seoul, Republic of Korea
{sueun1015, cxaexeong, jpaek}@cau.ac.kr

Abstract—As demand for ultra-high-speed Internet rises, the
flaws in traditional congestion control methods based on packet
loss are becoming clear. In wireless networks, packet loss often
results from interference and collision, not actual congestion,
causing inefficiencies. Delay-based congestion control algorithms
which typically use round-trip time (RTT) as a key metric have
been proposed to address these challenges. However, RTT alone
cannot fully capture queuing delays, and small variations in delay
measurements can cause significant fluctuations in the sending
rate, leading to packet loss or inefficient link utilization. This
study introduces TCP-do, a novel protocol that shifts the focus
from static delay measurements to analyzing delay oscillation
frequency. TCP-do monitors dynamic delay fluctuations and pre-
cisely adjusts the congestion window (cwnd), greatly enhancing
delay-based congestion control especially in environments with
frequent delay variations.

Index Terms—TCP, Delay-based congestion control, RTT anal-
ysis, Delay oscillation frequency

I. INTRODUCTION

As the demand for high-speed, reliable internet connections
continues to grow, the limitations of traditional congestion
control methods are becoming increasingly apparent. TCP
CUBIC [1], a widely adopted loss-based congestion control
algorithm, exemplifies these methods by using packet loss as
a primary signal for congestion. However, in environments
where network conditions are dynamic and unpredictable, such
as modern wireless networks, relying on packet loss as a
primary indicator of congestion often leads to suboptimal per-
formance. Packet loss in these networks is frequently caused
by signal interference rather than actual network congestion,
resulting in a misinterpretation that can significantly degrade
network efficiency.

To address these challenges, the networking community has
explored alternative approaches, particularly those based on
network delays rather than packet loss. Delay-based conges-
tion control algorithms offer a promising solution, adjusting
transmission rates by analyzing network delay, typically using
round trip time (RTT) as a key metric. However, RTT mea-
surements can be influenced by a multitude of non congestive

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1A4A5034130 & No. RS-2024-00359450), and also by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2024-RS-2022-00156353) super-
vised by the IITP (Institute for Information & Communications Technology
Planning & Evaluation)

factors, making it difficult to isolate the impact of actual
congestion. Furthermore, the broad range of speeds over which
congestion control algorithms must operate exacerbates this
problem, as small inaccuracies in delay measurement can lead
to large fluctuations in transmission rates, thereby reducing
overall efficiency of the network.

Recognizing these issues, recent research has shifted to-
wards analyzing delay trends, such as the rate of RTT in-
crease, to better understand and manage congestion. However,
these approaches often overlook the importance of dynamic
delay fluctuations, which are critical for accurately assessing
network conditions in real time. We thus introduce TCP-do,
a novel protocol that leverages delay oscillation frequency to
dynamically respond to changing network conditions. By shift-
ing the focus from static delay measurements to the frequency
of delay oscillations, this new approach provides a more
detailed understanding of congestion, enabling more precise
control of transmission speeds and ultimately enhancing the
performance of delay based congestion control algorithms. In
our evaluations, the proposed algorithm consistently outper-
formed existing algorithms by achieving higher throughput
while maintaining lower and more stable RTTs. Its ability to
effectively manage dynamic network conditions demonstrates
its suitability for environments with varying traffic patterns
and delays.

II. RELATED WORK

This section reviews delay based congestion control algo-
rithms in TCP networks, categorizing them into static delay
based approaches and trend based delay approaches that
analyze delay patterns and variations.

A. Static Delay Based Congestion Control Algorithms

Early delay based congestion control algorithms used in-
stantaneous RTT values to assess network state and directly
adjust transmission rates. TCP NewReno [2] is an example of
such an early algorithm. It combines RTT measurements with
packet loss information to adjust transmission rates during
congestion recovery. TCP Vegas [3] introduced the concept of
using the difference between expected and actual RTT to detect
congestion earlier. TCP FAST [4] advanced this approach
for high speed network environments by utilizing absolute

461979-8-3503-6463-7/24/$31.00 ©2024 IEEE ICTC 2024

RTT values to rapidly adjust transmission rates and prevent
congestion.

However, these algorithms struggle with accurately measur-
ing congestion induced delay using RTT. Directly mapping
RTT to transmission rates can lead to significant fluctuations
due to small measurement errors, and this issue becomes
particularly pronounced when managing a wide range of
transmission speeds, ultimately leading to inefficient use of
network resources [5].

B. Trend Based Delay Congestion Control Algorithms

Trend based congestion control algorithms analyze patterns
of delay variation and the rate at which it increases to more
accurately detect congestion and adjust transmission rates
accordingly. For example, TCP Flexis [6] operates by contin-
uously monitoring the speed and direction of RTT changes,
dynamically adjusting the transmission rate when a sharp
increase in RTT is detected as a signal of congestion. Similarly,
TCP Copa [7] focuses on detecting congestion by emphasizing
the rate of RTT increase, aiming to improve the precision of
delay based congestion control. TCP BBR [8] combines RTT
trends with bandwidth estimation to simultaneously address
delay and throughput, offering a comprehensive approach to
congestion control.

Recently, the analysis of RTT oscillation frequency has
gained attention due to its increasing use in enhancing the
accuracy of congestion detection. The emergence of dynamic
TCP algorithms, such as D-TCP [9], which adaptively adjust
congestion control based on channel variability, further un-
derscores the importance of analyzing network fluctuations.
Building on these studies, we have also aimed to incorporate
delay oscillation frequency analysis into TCP-do to better
reflect trends in delay.

III. DESIGN

Delay-based congestion control algorithms monitor the net-
work’s RTT to detect congestion, with increased RTT fluc-
tuations and oscillations occurring under heavier congestion.
As shown in Fig. 1, which includes both low-congestion and
high-congestion scenarios (Fig. 1a and Fig. 1b, respectively),
RTT changes and oscillation frequencies vary significantly
depending on the level of congestion. Recognizing that these
oscillation frequencies reflect congestion accurately, we de-
vised a method to use them for real-time congestion detection.
Based on this approach, TCP-do analyzes the magnitude of
oscillation frequency to dynamically adjust the cwnd.

The algorithm described in Alg. 1 monitors variations in
RTT to calculate the oscillation frequency. Each time a packet
is acknowledged (ACK), it measures the difference between
the current RTT and the previous RTT. The oscillation count
is increased only if this difference exceeds 0.01 ms, effectively
filtering out minor fluctuations and focusing on significant
changes that indicate actual congestion. The recorded oscil-
lation count is then used to compute the frequency over a
100 ms window. If this frequency surpasses a predefined
congestion threshold, the network is deemed to be congested.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0.14

0.15

0.16

0.17

R
T
T

(
s
)

RTT (TCP-Vegas Low-Congested)

(a) Low-Congested

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0.14

0.15

0.16

0.17

R
T
T

(
s
)

RTT (TCP-Vegas High-Congested)

(b) High-Congested

Fig. 1: RTT Oscillation using TCP-Vegas

Algorithm 1 Calculate Oscillation Frequency

1: Init: osc cnt ← 0, last rtt ← 0, start ← cur
2: if |cur rtt− last rtt| > 0.01 ms then
3: osc cnt ← osc cnt+ 1
4: end if
5: last rtt ← cur rtt
6: if cur − start ≥ 100 ms then
7: osc freq ← osc cnt/100, osc cnt ← 0, start ←

cur
8: end if
9: Update RTT history, calculate w avg

10: if osc freq > cong thresh then
11: Mark as congested
12: end if

Using weighted averages for predicting network performance
is a common practice in the field [10]. By applying this tech-
nique to recent RTT values, TCP-do more accurately captures
sustained patterns, enabling reliable real-time monitoring of
the network’s congestion state.

When congestion is detected, the algorithm dynamically
adjusts the cwnd based on the ratio of oscillation frequency
to the congestion threshold. The cwnd is reduced according to
the severity of congestion:

reductionFactor = max(0.7, 1.0− severity × 0.1) (1)

The greater the congestion, the more significantly the cwnd
is reduced, by up to 30%, to alleviate network load. In cases
of mild congestion, the reduction is minimized to maintain
throughput as much as possible After congestion subsides,
the congestion threshold is temporarily increased by a factor
dependent on the severity of congestion to allow for faster
recovery of the cwnd:

recoveryFactor = min(1.5, 1.0 + severity × 0.2) (2)

Conversely, if no congestion is detected or RTT oscillations
are minimal, TCP-do increases the cwnd more aggressively

462

Receiver

1Gbps

Sender Router

1Gbps
1Gbps

Delay
: 0.5ms ~ 1.5ms

Delay
: 0.5ms ~ 1.5ms

(a) Controlled Delay Scenario

Sender
(1)

ReceiverRouter

Traffic Nodes
(9)

200Mbps

1Gbps

200Mbps/node

Packet Loss
: 0.1%

(b) Dynamic Traffic Scenario

Fig. 2: Network Topologies Used in Experimental Setup

by 7 times the segment size at a time and temporarily
lowers the congestion threshold by 2% to induce change.
This approach enables the system to quickly adapt to various
network conditions and maintain stability, even in highly
variable environments.

IV. EVALUATION

In this paper, we used the ns-3 network simulator to
compare the performance of the proposed algorithm with TCP-
BBR and TCP-CUBIC. These algorithms were selected as
they represent the most popular delay-based and loss-based
congestion control methods, respectively. The experiments
were conducted using two scenarios, focusing on RTT and
throughput as the primary performance metrics.

The experimental scenarios are summarized in Fig. 2. In
the controlled delay scenario (Fig. 2a), a 1 Gbps link connects
the sender, router, and receiver. Random delays between 0.5
ms and 1.5 ms are applied to introduce slight variability,
simulating a wired network with real-world imperfections but
no competing traffic. The sender transmits data at 200 Mbps
using a constant On/Off pattern with both on-time and off-time
set to 0.1 seconds, adding minor variability. In the dynamic
traffic scenario (Fig. 2b), the setup includes a sender, a router,
and a receiver, along with 9 additional traffic nodes. Both the
sender and traffic nodes connect to the router, which forwards
all traffic through a shared 1 Gbps link to the receiver. Each
traffic node, including the sender, transmits at 200 Mbps using
a random On/Off pattern, with a mean on-time of 0.1 seconds
and an off-time of 0.2 seconds, starting randomly within the
first second. The shared link introduces a 0.1% packet loss
rate, simulating wireless network variability and congestion.

The results presented in Fig. 3 demonstrate that TCP-
do consistently achieves superior performance in the controlled
delay scenario. As illustrated in Fig. 3a, the proposed algo-
rithm maintains the lowest RTT, averaging 0.004029 seconds,

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0.004

0.006

0.008

0.010

0.012

0.014

0.016

R
T
T

(
s
)

TCP-CUBIC

TCP-BBR

TCP-DO

(a) RTT

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

120

125

130

135

140

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

TCP-BBR

TCP-CUBIC

TCP-DO

(b) Throughput

Fig. 3: RTT and Throughput Comparison in Controlled Delay
Scenario

outperforming both TCP-BBR and TCP-CUBIC. Furthermore,
Fig. 3b shows that TCP-do also excels in terms of throughput.
It achieves an average throughput of 124.01 Mbps, surpassing
TCP-BBR (123.09 Mbps) and TCP-CUBIC (122.94 Mbps).
These results underscore the effectiveness of the proposed
approach in enhancing network efficiency by maintaining
low latency and high throughput, even in environments with
controlled delay.

The results in Fig. 4 demonstrate that the proposed algo-
rithm performs effectively in the dynamic traffic scenario. As
shown in Fig. 4a, the algorithm maintains relatively stable RTT
values with fewer spikes compared to TCP-BBR. These spikes
occur in TCP-BBR because it estimates available bandwidth
and misinterprets transient delay increases as signs of network
congestion, leading to unnecessary rate adjustments. In con-
trast, the proposed algorithm more effectively manages delay
variations, reducing RTT fluctuations. In terms of throughput,
the new method achieves performance comparable to TCP-
BBR, as shown in Fig. 4b. Specifically, it maintains an
average throughput of 60.17 Mbps, slightly surpassing TCP-
BBR’s 59.45 Mbps, indicating a 1.22% improvement. While
TCP-CUBIC struggles with significantly lower throughput,
averaging only 17.21 Mbps due to its sensitivity to packet
loss in dynamic conditions, the proposed method sustains
high throughput. This balance of maintaining stable RTT
and achieving high throughput makes it well-suited for en-
vironments with dynamic traffic patterns and varying network

463

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0.005

0.010

0.015

0.020

0.025

0.030

R
T
T

(
s
)

TCP-CUBIC

TCP-BBR

TCP-DO

(a) RTT

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0

20

40

60

80

100

120

T
h
r
o
u
g
h
p
u
t

(
M

b
p
s
)

TCP-BBR

TCP-CUBIC

TCP-DO

(b) Throughput

Fig. 4: RTT and Throughput Comparison in Dynamic Traffic
Scenario

conditions.

V. CONCLUSION

Recent advancements in congestion control have focused on
incorporating delay trends to better handle dynamic network
environments. In this study, we introduced a novel approach
that leverages delay oscillation frequency to enhance conges-
tion detection. This method is particularly effective in sce-
narios where RTT remains low despite underlying congestion,
such as during brief traffic spikes. It also addresses cases where
interference causes minor packet delays without significant
RTT changes. This research highlights the potential to improve
the accuracy and stability of congestion control, making a
valuable contribution to the field. For future work, we plan to
test our approach in real-world environments using advanced
simulators and explore integrating machine learning to further
enhance its performance.

REFERENCES

[1] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp.
64–74, 2008.

[2] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 2582, 1999.

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance,” in SIGCOMM
’94: Proceedings of the conference on Communications architectures,
protocols and applications, 1994, pp. 24–35.

[4] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motivation,
architecture, algorithms, performance,” IEEE/ACM Transactions on Net-
working, vol. 14, no. 6, pp. 1246–1259, 2006.

[5] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in end-to-
end congestion control,” in SIGCOMM ’22: Proceedings of the ACM
SIGCOMM 2022 Conference, 2022, pp. 177–192.

[6] Q. Li, “TCP FlexiS: A New Approach to Incipient Congestion Detection
and Control,” IEEE/ACM Transactions on Networking, vol. 32, no. 2,
pp. 1245–1260, 2024.

[7] V. Arun and H. Balakrishnan, “Copa: Practical Delay-based congestion
control for the internet,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 329–342.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. Hassas Yeganeh, and V. Jacob-
son, “Bbr: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time,” ACM Queue, vol. 14, no. 5,
pp. 20–53, 2016.

[9] M. R. Kanagarathinam, S. Singh, I. Sandeep, H. Kim, M. K. Ma-
heshwari, J. Hwang, A. Roy, and N. Saxena, “NexGen D-TCP: Next
Generation Dynamic TCP Congestion Control Algorithm,” IEEE Access,
vol. 8, pp. 164 482–164 496, 2020.

[10] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer TCP throughput,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 4, pp. 145–156, 2005.

464

