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Abstract—Autonomous driving technology has gained signif-
icant interest recently due to its potential for efficiency, conve-
nience, and safety. Within this context, localization, which aims to
determine the precise location of the vehicle, is a crucial technique
for the operation of autonomous vehicles. Among various local-
ization techniques that have been proposed, LiDAR has gained
significant attention for its ability to provide high-quality 3D
data and its resistance to light variations. Consequently, LiDAR
sensor-based localization has emerged as a fundamental approach
in autonomous navigation systems. This paper reviews research
efforts related to LiDAR-based localization. We categorize these
efforts based on two main criteria: (1) Sensor Data Usage Method,
(2) Map Utilization Method. We aim to analyze the potential and
limitations of each approach, understand current research trends,
and suggest future directions for research in this field.

Index Terms—LiDAR, Localization, Mapping, Autonomous
vehicles, SLAM

I. INTRODUCTION

Autonomous vehicle technology is rapidly gaining atten-
tion due to its potential to revolutionize various aspects of
transportation. Companies such as Google’s Waymo, Intel’s
Mobileye and Hyundai’s Motional are developing this tech-
nology. There are several reasons for the growing need for
autonomous vehicles. First, autonomous driving can signif-
icantly improve traffic management and convenience. This
convenience extends to individuals who are unable to drive,
allowing them to travel independently. Additionally, human
errors cause a significant number of accidents. According to
the NHTSA, urban traffic fatalities increased by approximately
60 % over the past 10 years, with 32 % of these fatalities
involving alcohol-impaired driving [1].

To achieve high performance in autonomous driving, lo-
calization plays a significant role in autonomous driving. It
is a crucial technology that enables autonomous vehicles to
accurately determine their position, allowing them to drive
safely on the road. Fig. 1 illustrates the pipeline of how au-
tonomous driving is processed. Without accurate localization,
an autonomous system cannot properly do next steps such as
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Fig. 1: Autonomous Vehicle’s Pipeline

path planning, speed control, and braking. This can lead to
significant problems to an autonomous system. For instance,
localization error can cause a vehicle to misunderstand its
position, leading to potential collisions or traffic disturbances.
For an autonomous vehicle system to be reliable under any
environmental conditions, it has to achieve accuracy of around
10 cm. This high level of precision is essential for the
vehicle to navigate safely and efficiently, avoiding obstacles
and staying within its designated path.

Achieving such accuracy involves sophisticated technolo-
gies and algorithms that process sensor data, such as LiDAR,
radar, GPS, and cameras, to continuously update the vehicle’s
position in real time. Among various localization techniques,
LiDAR has gained significant attention due to its exceptional
capabilities in providing high-resolution 3D data. LiDAR op-
erates by emitting laser pulses and measuring the time it takes
for the reflections to return, creating detailed 3D data, Point
Cloud. This technology is highly valued for its robustness
under various lighting conditions [2], making it a fundamental
sensor for localization in autonomous vehicles. The goal of this
survey is to review research efforts related to LiDAR-based
localization.

We categorize these efforts based on two main criteria:

1) Sensor Data Usage Method
• LiDAR-only vs. Sensor fusion

2) Map Utilization Method
• Global Map vs. Local Map

Table I shows a summary of the categorization. Then, we
analyze the potential and limitations of each approach. Finally,
we discuss recent changes and provide future directions.
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II. BACKGROUND

In this section, we will explore techniques for LiDAR-
based localization. We will start by explaining the concepts of
mapping and localization, followed by a discussion of point
cloud registration, a technique used in LiDAR-based mapping
and localization.

A. Mapping & Localization

Mapping is an essential component for enabling au-
tonomous vehicles to navigate safely and effectively in un-
known environments. Just like humans find their way using
maps, autonomous vehicles also rely on maps for navigation.
However, without a pre-existing map, the navigation process
can be significantly downgraded.

Mapping is the process of generating an accurate map of
the surroundings by using various sensors, especially when
a prior map is unavailable. This map plays a crucial role
in helping the vehicle determine its own location, recognize
important landmarks, and ensure safe navigation. Based on
the map created during the mapping process, the autonomous
vehicle can identify landmarks and calculate and estimate its
path. The map also aids in identifying potential obstacles,
enabling the vehicle to adjust its path accordingly and avoid
collisions. In short, mapping forms the foundation upon which
safe and reliable autonomous driving is built, guiding the
vehicle through both familiar and unfamiliar environments
with precision and confidence.

B. Point cloud registration

Point cloud registration is the process of calculating the
transformation matrix for the same model, captured from
different perspectives. Once the transformation matrix is deter-
mined, the point clouds are aligned into a common coordinate
system and stitched together [3]. This process is crucial for
tasks such as 3D reconstruction, object recognition, robot
positioning and navigation, and automatic map building. The
Iterative Closest Point (ICP) [4] and Normal Distribution
Transform (NDT) [5] algorithms are fundamental methods
used for point cloud registration.

One of the key factors in achieving better registration is
determining an accurate initial guess for the transformation
matrix, as poor initial guesses can lead to the problem of local
minima. To address this, coarse registration is typically used to
estimate the initial guess, followed by fine registration to refine
the alignment [3]. In cases where HD maps or GPS signals
are available, precise position information can be obtained,
allowing for a good initial guess. This helps to avoid the
issue of local minima, leading to more accurate and reliable
registration.

III. LIDAR-BASED LOCALIZATION: A REVIEW

In this section, we will provide an overview of various
methodologies related to LiDAR-based localization. Given the
extensive research in this area, we will categorize LiDAR-
based localization methods into two key aspects:

1) Sensor Data Usage Method: This includes approaches that
rely on LiDAR data, which can be independent of other
sensors (LiDAR-only localization) and those that combine
LiDAR with other sensors (Sensor fusion localization).

2) Map Utilization Method: This encompasses techniques
based on Global Map, leveraging prior High-Definition
(HD) maps as well as those that use Local Map using
collected sensor data.

This categorization clarifies the unique characteristics of each
approach, helping identify the most suitable technology for
specific applications

A. Sensor Data Usage - LiDAR-only

LiDAR-only localization can operate independently without
relying on other sensors when they (e.g., cameras, GPS,
or radar) are unavailable. This method is computationally
efficient compared to multiple sensor methods as it focuses on
processing data from a single source. It can reduce complexity
and computational load, allowing for faster processing. This
independence from other sensors simplifies the system and
reduces its susceptibility to other sensors’ failure or inaccu-
racy [14].

For example, the purpose of the KISS-ICP [6] is to provide a
simple yet effective localization system. The system focuses on
reducing complexity by using minimal parameters, eliminating
the need for additional sensors like Inertial Measurement
Unit (IMU). CT-ICP [7] introduces a technique that allows
for continuous-time odometry and robust registration, even
during high-frequency motions. This method compensates for
distortions in scan data due to rapid movement, enhancing
localization accuracy without the need for additional sensors
[8], [9], [14].

However, there are some problems with LiDAR-only
method. Firstly, LiDAR is sensitive to adverse weather condi-
tions such as fog, rain, and snow [20]. In such conditions, the
laser signals can be distorted or scattered, leading to degraded
quality of the collected data. This can reduce the accuracy
of the generated 3D point clouds, which can cause errors in
localization and potentially affect the safety of autonomous
systems. Additionally, LiDAR has a limited sensing range,
particularly when detecting objects at long distances [21]. As
a result, LiDAR-only systems may struggle to accurately iden-
tify and track distant objects, reducing overall effectiveness in
some applications.

B. Sensor Data Usage - Sensor fusion

While LiDAR-based localization is advantageous due to its
high-resolution 3D point cloud generation, it has some lim-
itations. It requires support from additional sensors. LiDAR-
based localization with additional sensors can be divided into
two categories: sensor fusion and LiDAR-Inertial methods.
Sensor fusion is the process of integrating data from multiple
sensors to produce more accurate, reliable, and comprehensive
information [22]. LiDAR Inertial method integrates LiDAR
with IMU sensors. Kim et al. [10] and Wu et al. [11] conducted
localization using LiDAR-Inertial Odometry (LIO), which is
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TABLE I: Categorized LiDAR-based Localization method

Mapping Sensor Usage Pros Cons Reference

Local Map

LiDAR-only - Achieves independence from other sensors
- Reduces complexity and computational load

- Sensitive to adverse weather conditions
- Struggles with long-range object detection

[6], [7],
[8], [9]

LiDAR Inertial
- Improves pose estimation and alignment
- Handles dynamic environments and fast motion
- Compensates for sensor drift

- Increases complexity due to added IMU
- Requires calibration between LiDAR and IMU [10], [11]

Sensor Fusion
- Combines strengths of multiple sensors
- More robust in complex or dynamic scenarios
- Provides better accuracy and redundancy

- Increased complexity and computational demands
- Requires synchronization and calibration
- Each sensor contributes its own noise

[12], [13]

Global Map

LiDAR-only
- Provides centimeter-level accuracy
- No need for external sensors
- Efficient for known/static environments

- Requires regular updates to HD maps
- Struggles in changing environments without updates
- Dependent on pre-existing maps

[14], [15],
[16]

LiDAR Inertial - Supports robust initial pose estimation
- Provides resilience in sensor-limited conditions

- Higher system complexity with IMU integration
- Dependent on reliable IMU and sensor fusion algorithms
- Not as useful in open areas with strong GPS signals

[17],

Sensor Fusion - Provides superior accuracy in complex environments
- Overcomes limitations of individual sensors

- Adds significant computational and system complexity
- Requires extensive sensor calibration and fusion algorithms
- Potentially higher cost and power consumption

[18], [19]

part of the LiDAR inertial method. The difference between
sensor fusion and LiDAR Inertial is that LiDAR Inertial only
depends on IMU, while sensor fusion can integrate many other
sensors, such as radar and cameras.

By combining each sensor’s strengths, sensor fusion com-
pensates for the limitations of individual sensors. For example,
Lin et al. [12] demonstrate that LIO subsystem constructs
the geometric structure of the map, while the Visual-Inertial
Odometry (VIO) subsystem renders the texture of the map.
The main advantage of this sensor fusion approach is its ability
to overcome the limitations of individual sensors. It not only
provides enriched data but also helps overcome the limitations
of each sensor. Another example is Boche et al. [13], which
combines LIO and VIO. It proposes a new LiDAR-based
residual formulation that generates consistent maps without
requiring time-consuming data association processes like ICP.
Some method combines LiDAR with radar sensors, using the
radar’s long range sensing capability [19].

However, using and integrating many sensors simultane-
ously increases the complexity of systems. The process of
fusing data from various sensors can lead to increased hard-
ware and software demands, requiring more resources and
effort in design and implementation. Additionally, noise and
errors produced by each sensor during the fusion process can
significantly impact the final results.

C. Map-based - Global Map Localization

Global Map Localization is a technique that relies on pre-
built HD maps to estimate the position of a vehicle. Fig. 2a
illustrates the process of localization using a global map.
It compares sensor data with the HD map to evaluate the
vehicle’s current location [23]. An HD map includes detailed
data such as the layout of roads and buildings as well as finer
details like lane markings, traffic signs, and even curbs [24].
Using the prior map method plays a critical role in autonomous
driving by providing a highly detailed, static representation of
the environment.

These rich environmental details allow for precise local-
ization, often achieving centimeter-level accuracy, which is
essential for ensuring the safety and reliability of autonomous
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Fig. 2: Comparison of (a) Global Map’s Pipeline and (b) Local
Map’s Pipeline.

vehicles. Additionally, since the map is static, transforming
each data point’s coordinate system to the map’s reference
frame is straightforward, allowing for faster calculations [16].
Moreover, a prior HD map helps with localization when
other sensors are unavailable. For instance, Tao et al. [18]
demonstrate that when a vehicle is inside the tunnel and
GPS is unavailable, the HD map can still support localization.
Efraim et al. [15] use LiDAR and camera to achieve drift-free
localization and precise point cloud registration. Another case
is Song et al. [17], which uses LiDAR inertial localization
with a prior map. These methods help improve initial pose
estimation and enhance localization accuracy.

However, using HD maps comes with its own set of chal-
lenges. To maintain their accuracy and relevance, HD maps
must be regularly updated to reflect environmental changes,
such as new road layouts, construction, or modified traffic
signals. This updating process can be both costly and time-
consuming, as it often requires new data to be collected,
processed, and integrated into the existing map.

D. Map-based - Local Map Localization

Local Map Localization involves using sensor data to create
a local map through mapping and then using a local map for
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localization. Fig. 2b shows how localization is performed using
a local map. SLAM is one of the methods that use the local
map for localization. It is a technique that enables a vehicle to
create a map of an unknown environment and simultaneously
determine the location of the vehicle within the map [25]. Un-
like Global Map Localization, SLAM dynamically constructs
the map in real-time using sensor data. Recently, LiDAR has
become the primary sensor for SLAM due to its wide field of
view and high precision in distance measurements [26]. SLAM
provides significant flexibility and autonomy, enabling vehicles
to navigate in unknown or changing environments. It allows
vehicles to be highly adaptable to dynamic situations. For
example, Isaacson et al. [8] show autonomy without relying
on pre-existing maps. It steps further by leveraging neural
implicit representations, which enable it to handle complex
environments more efficiently.

However, performing pose estimation, there is no accurate
global map at the start. Therefore, in situations where the
GPS signal is weak, localization must rely solely on internal
sensors. In another case, the errors that occur from each sensor
accumulate over time, which is known as drift. This drift can
degrade the accuracy of pose estimation. If the pose estimation
is inaccurate, it can negatively impact the accuracy of both the
mapping and localization in the SLAM system. Additionally,
LiDAR-SLAM requires significant computational resources
due to the large volume of 3D point clouds. Real-time process-
ing and updating require considerable computational resources
due to their inherent complexity. Thus, the LiDAR Odometry
and Mapping (LOAM) [9] method was introduced to improve
the real-time performance of SLAM. It can enhance real-time
capabilities by aligning only feature points during point cloud
registration.

IV. RECENT WORKS

A single-source system uses LiDAR information collected
from a single vehicle. In this approach, the vehicle indepen-
dently collects LiDAR data to perceive its surroundings or
estimate its position. A multi-source system refers to one that
integrates LiDAR information collected from multiple vehi-
cles. Most localization systems aim to localize independently
and accurately. However, single-source sensors have several
limitations. For instance, LiDAR range limitations, object
occlusion, and blind spots can make a single-source system
unreliable. In this case, it causes misperception or detection
failures leading to an unreliable system [27]. Lastly, HD
maps are often criticized for their high costs and maintenance
difficulties, making them impractical. To address these issues,
multi-source perception has emerged as an alternative, and
many recent studies have focused on this area [28]–[33].
In multi-source perception, many vehicles communicate with
each other and share data, allowing them to gain a broader
and more accurate view of their surroundings. However, a
significant issue in studies on multi-source perception is that
the following aspects are often overlooked.

(a) Network Error (b) Adversarial

Fig. 3: The case of multi-source perception problems

A. Lack of Validation under Unstable Network Conditions

Most multi-source systems lack validation under unstable
network conditions. While some papers consider network en-
vironments in multi-source systems [34], most do not account
for network conditions. Fig. 3a illustrates the scenario when
the network is not functioning properly. When vehicles share
captured data, network conditions must be considered, as
real-world networks are highly complex and unpredictable.
Otherwise, the accuracy and real-time performance may not be
guaranteed in cases of poor network conditions. Incorporating
additional evaluation criteria related to network conditions is
necessary. For example, experiments under congestion, high
packet loss, or limited bandwidth would help build a more
robust system.

B. Insufficient Protection Against Malicious Attack

There is insufficient protection against malicious or faulty
data exchanges. In autonomous driving, the accuracy of lo-
calization and perception is important as it is directly related
to safety. Multi-source perception significantly improves ac-
curacy. However, the problem arises when the information
from each source is inaccurate or subjected to malicious
attacks. Fig. 3b illustrates the scenario of an attack from a
malicious vehicle. Most research on multi-source perception
does not consider these issues. Adversarial attacks, such as
adding spoofed obstacles or walls, can cause incorrect driving
decisions and lead to collisions [35]. However, these factors
are often overlooked. Although recent papers have addressed
these adversarial attacks [36], much more research is still
necessary.

V. CONCLUSION

In this paper, we surveyed various LiDAR-based local-
ization techniques. While each approach has its strengths,
they also have significant challenges. Recent advancements in
multi-source systems show potential to address some of these
challenges but still face issues like network reliability and data
security. Most research focused on improving the performance
of localization and perception. However, a large amount of
research does not consider diverse problem scenarios, which
remains a significant issue. To resolve these challenges, future
research should focus on improving the reliability and robust-
ness of LiDAR-based localization in autonomous systems.
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