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Abstract—Pose estimation is a fundamental task in many
applications that utilizing 3D data from sensors like LiDAR
and RGB-D cameras. It is particularly crucial in fields where
precise position and orientation information are required, such
as autonomous driving, cooperative perception, robotics, and
augmented reality (AR). To improve the pose estimation, many
methods used in other applications are adopted to enhance
the network architecture and these methods make significant
progress in pose estimation. However, when using deep neural
networks (DNNs), the issue of discontinuous rotation representa-
tion has emerged, and various studies pointed out that this could
be a cause of substantial error. Therefore, we focus on addressing
the issue of discontinuities by reviewing the latest research trends
in pose estimation published by major academic publishers and
provide insights into future directions for pose estimation.

Index Terms—Pose estimation, rotation representation, neural
networks

I. INTRODUCTION

3D sensors such as LiDAR, and RGB-D camera provide
accurate 3D data representing the real world, which offer
the essential cognitive ability to recreate the real world. This
cognitive ability enables significant progress in fields like
augmented reality [1], autonomous driving [2], inverse kine-
matics [3], and other applications. At the core of technological
advancements based on such 3D data is the pose estimation
technique, which estimates the position and orientation of an
object or the sensor itself.

Before the widespread adoption of deep neural networks
(DNN), pose estimation relied on hand-crafted features or
algebraic solutions. However, conventional methods are vul-
nerable to noisy, cluttered scenes and cannot be generalized for
various scenes. Therefore, when the robust feature matching
capability of DNN became evident, which improved robust-
ness to complex scenes, using DNNs for pose estimation
became dominant.

While deep-learning based solutions have significantly im-
proved the accuracy of pose estimation, errors still persist,
and researchers continue to strive to minimize these errors
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Fig. 1: Overview of rotation estimation

further. One of the reasons for errors is the representation of
rotation. Euler angles, unit quaternions, or axis-angle repre-
sentations are typically used, but the discontinuity in these
rotation representations can be a significant vulnerability. We
analyze and review research papers to provide insights into the
directions and trends of recent studies addressing this issue.
Additionally, since pose estimation is an essential task before
providing 3D data to recreate the real world, we also explore
studies that apply neural networks (e.g., ensemble, attention
mechanism) designed for specific field, beyond research on
rotation representation.

The remainder of this article is organized as follows. We first
introduce Euler angles and unit quaternions in Section II and
describe the papers on rotation representation in Section III. In
Section IV, we discuss non-rotation methods to address dis-
continuities, and finally, we conclude the article in SectionV.

II. BACKGROUND

To represent 3D rotation in pose estimation, using Euler
angle or unit quaternion is simple and intuitive approach. Euler
angles represent the orientation of an object in 3D space using
three sequential rotations, as expressed in equation (1), where
the rotations performed in XY Z order. Each angle α, β, γ
corresponds to a rotation about X,Y, Z axes respectively,
where s and c denote the sin and cos functions.

Reuler =




cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ


 (1)

Euler angles are intuitive and easy to understand, but they
have the drawback such as gimbal lock [4], where two axes
align, causing a loss of one degree of freedom (DoF) and
limiting the representation to 2D rotation.
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Fig. 2: Timeline of progress in pose estimation. Blue and red arrows refer rotation representation approaches, and non-rotational approach,
respectively. Self-selecting ensemble method is non-rotational approach, but it aims to achieve rotation continuity.

In contrast, as shown in equation (2), a quaternion is rep-
resented as a four dimensional complex number consisting of
one real part and three imaginary components corresponding
to i, j, k, where qw is a scalar part of quaternion, and qx, qy, qz
are coefficients of imaginary parts.

q = qw + qxi+ qyj + qzk (2)

Quaternion can also be represented using trigonometric func-
tions as:

q = cos

(
θ

2

)
+ sin

(
θ

2

)
(vxi+ vyj + vzk) (3)

where θ represents the rotation angle, and vx,y,z denote the
rotation axis, making it more intuitive to understand compared
to equation (2).

To perform a rotation using a quaternion, we can use the
formula shown in equation (4), where p′ represents the rotated
quaternion. This is achieved by applying the quaternion q, its
conjugate q∗, and the quaternion to be rotated p as follows:

p′ = qpq∗ (4)

Furthermore, a quaternion can be converted into a rotation
matrix, as shown in equation (5),

Rquat =



1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qyqx + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)
2(qzqx − qwqy) 2(qzqy + qwqx) 1− 2(q2x + q2y)


 (5)

where qw is the scalar value of the quaternion, and the others
represent the coefficient of imaginary numbers (i, j, k). This
rotation matrix Rquat allows for the application of 3D rotations
in a form that is compatible with linear algebra operations
commonly used in graphics and robotics.

Due to robust interpolation method, spherical linear in-
terpolation (SLERP) and absence of gimbal lock issue, unit
quaternions are widely used in computer graphics, and com-
puter vision field. However, because of quaternion rotation
calculation in Eq. (4), quaternion q and −q represent the same
rotation, which create an ambiguity.

Fig. 1 shows the overview of rotation estimation. Rota-
tion representation is simply the output of neural networks,
typically expressed as N -dimensional vector, and mapping
functions are used to map this vector to a rotation, such as
3× 3 rotation matrix and vice versa.

PoseCNN [5] is representitive pose estimation method using
unit quaternions, which achieved high accuracy even when

multiple objects are occluded in cluttered scene. In this work,
it was observed that significant errors within certain rotation
angle ranges both in symmetric objects, and non-symmetric
objects. While the main causes of this issue are not clearly
identified, some researchers assume that it is due to discontin-
uous rotation representation.

III. ROTATION REPRESENTATION APPROACH

Many prior works are striving to reduce the error of pose
estimation. We can categorize their efforts in rotation repre-
sentation (rotation-related) approaches, which try to achieve
rotational continuity through rotation representation, and non-
rotational approaches. In this section, we categorize prior
works focusing on ‘continuity’. Fig. 2 shows the chronological
overview of prior research improving pose estimation.

A. Orthogonalization

Zhou et al. [6] pointed out that high error rates in certain
rotation angle ranges in PoseCNN [5], then argued these errors
are due to discontinuity of conventional rotation representa-
tion. Then, they proposed the 6D rotation representation. 6D
means two 3D orthogonal vectors gain from first and second
column vectors of 3 × 3 rotation matrix. The third column
vector can be restored from the two vectors, therefore, the
rotation matrix can be represented with six elements. The
mapping function to representation space is defined as:

g
([
c1 c2 c3

])
=

[
c1 c2

]
(6)

where cn represents the column vector of the rotation matrix
respectively. 6D representation [6] was a significant milestone
in the progress of pose estimation. This work not only pro-
posed a solution to a critical issue in pose estimation but
also sparked the widespread interest in the field of rotation
representation.

Levinson et al. [7] proposed rotation representation using
singular value decomposition (SVD) orthogonalization, which
needs 9D network output. This work is similar to Zhou
et al. [6] in that both representations involve orthogonal-
ization process. 6D representation uses the Gram-Schmidt
orthogonalization process, whereas the method proposed in
this paper uses SVD orthogonalization. While SV D(M) =
UΣV T , they train the network with SV DO(M) = UV T and
SV DO+(M) = UΣ′V T
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B. Symmetric matrix
Peretroukhin et al. [8] proposed another rotation represen-

tation adopting a quadratically-constrained quadratic program
(QCQP). This paper pointed out that prior rotation repre-
sentation including 6D representation [6] is a representation
for certain ‘point’, which cannot represent the uncertainty of
neural networks. Then they proposed ‘A’ matrix which is a
symmetric 4 × 4 matrix using a 10D vector and can cover
Bingham distribution over unit quaternions. Using dispersion
of distribution, this method can effectively detect and reject
out-of-distribution (OOD) data, which is called dispersion
thresholding (DT) without any additional stochastic processes.
‘A’ matrix is represented as:

A(θ) =



θ1 θ2 θ3 θ4
θ2 θ5 θ6 θ7
θ3 θ6 θ8 θ9
θ4 θ7 θ9 θ10


 (7)

where A(θ) is a quadratic cost function of QCQP, parameter-
ized by θ. Parameter θn are learned by neural network through
calculating sum and difference between each point within the
point cloud. As a result, ‘A’ matrix is equivalent to

N
k=1 Bk,

and Bk is defined as:
Bk =

a21 + a22 + a23 a3s2 − a2s3 a1s3 − a3s1 a2s1 − a1s2
a3s2 − a2s3 a21 + s22 + s23 a1a2 − s1s2 a3s1 − a1s3
a1s3 − a3s1 a1a2 − s1s2 a22 + s21 + s23 a2a3 − s2s3
a2s1 − a1s2 a3s1 − a1s3 a2a3 − s2s3 a23 + s21 + s22




(8)
where an, sn represent xn − yn and xn + yn with two point
x and y, respectively.

Lin et al. [9] pointed out that the approach proposed by Xi-
ang [10] is an ad hoc method (it will be introduced later), and
that it conceals the simple relationship between quaternions
with a complicated approach. Then they proposed an adjugate
matrix that also represents rotation with 4×4 symmetric matrix
using a 10D vector. The adjugate matrix is based on root mean
squared deviation (RMSD), and the expanded Frobenius loss
function proposed by Bar-Itzhack [11]. The adjugate matrix is
represented as:

Madj =



q2w qwx qwy qwz

qwx q2x qxy qxz
qwy qxy q2y qyz
qwz qxz qyz q2z


 (9)

where qmn represent qmqn of quaternions.

IV. NON-ROTATIONAL APPROACH

Research to improve pose estimation using methods other
than rotation representation has been performed. Since the
widespread adoption of DNNs, many fields have observed
improvement driven by the application of neural networks
designed for specific fields. Among the various ideas for
improvement, two of the most representative notable methods
are network ensemble and attention mechanism. Table I
shows the various methods to improve the robustness of pose
estimation. Even if they use the same method, the purposes
could be different.

Fig. 3: Rotational symmetry about z − axis. Without grey plane,
rotation cannot be perceived.

A. Ensemble

Network ensemble is a method to improve approximation
accuracy by using multiple networks. Multiple outputs could
be used to quantify and indicate uncertainty [12], or combine
multiple models with different characteristics [15].

Fig. 3 shows the issue from symmetric objects. While the
object appears the same, the pose is changed, and this phe-
nomenon causes ambiguity in rotation estimation. However,
many studies do not handle the symmetric objects separated
from other objects. Xiang [10] pointed out that methods
proposed in prior works [6]–[8] successfully reduced the
average error, but still performed large maximum error of 90◦

to 180◦ especially on symmetric objects. They argued that
the large maximum error is due to topological error in neural
networks, which is a cause of rotation discontinuity. Then, Xi-
ang [10] proposed a self-selecting ensemble method using four
training functions that are selected based on conditions. This
method solved the discontinuity problem without proposing a
new rotation representation. In the experiments, a significant
reduction in maximum error is observed.

Shi et al. [12] pointed out the unreliability of deep learning-
based pose estimation. Then, they proposed the fast uncer-
tainty quantification (UQ) method, which ensembles multiple
heterogeneous models. They first estimate pose respectively,
then calculate average disagreement, which refers to errors
between different estimated poses.

B. Attention mechanism

The attention mechanism is a widely used method in lan-
guage models, which can applied to improve pose estimation
robustness. By using attention weight, the system can identify
the importance of different inputs, allowing the network to
focus more on elements that have a greater impact on the es-
timation Prior pose estimation research, for example, Kocabas
et al. [14] adopted the self-attention mechanism on pose esti-
mation to improve human pose estimation in sequential input
data such as video. They used the self-attention mechanism
in motion discriminator, which enabled the network to learn
relative importance between each frame, and assign higher
attention weight to them.

Hoang et al. [13] utilized the self-attention mechanism to
capture the correlation between objects. They divide correla-
tion into inter-part correlation and inter-instance correlation,
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Category Method Description Reference

Rotation-related
Orthogonalization Incorporate orthogonalization within neural network output [6], [7]
Symmetric Matrix Symmetric 4× 4 matrix for rotation representation [8], [9]

Non-rotation
Ensemble Use multiple network/learning function [10], [12]

Attention Mechanism Weight to highlight important characteristics [13], [14]

TABLE I: Different methods of pose estimation improvement

then calculate them separately. Through correlation infor-
mation, the system could perform relatively accurate pose
estimation even when objects are heavily occluded by others.

C. Progression through multi-approach

We notice that the both rotation representation approach
and non-rotational approach could applied simultaneously. For
example, the method proposed by Xiang [10] shows that even
though this method aimed to achieve rotational continuity
through network topology, novel rotation representation ap-
proaches can improve the accuracy further. Not only in the
self-selecting ensemble, Hoang et al. [13] also adopted 6D
representation to represent 3D rotation. Furthermore, state-
of-the-art pose estimation methods including human pose
estimation and object pose estimation are adopting the rotation
representation method in their algorithms [16]–[21]. There-
fore, adopting continuous rotation representation could be an
easy, plug-and-play method for improving pose estimation.

V. CONCLUSION

Tremendous efforts are being dedicated to developing ac-
curacy and robustness in pose estimation within academia.
We reviewed prior efforts to improve accuracy and robust-
ness of pose estimation, and classified prior approaches into
two major categories. Based on our observation, integrating
continuous rotation representation with other approaches can
lead to significant progress in pose estimation. By integrating
multiple approaches across different categories, it is possible
to significantly enhance the accuracy and reliability of pose
estimation, the core of other 3D applications.

Future pose estimation research should focus not only on
neural network architectures, but also on continuity of rotation
representations. We aim our comprehensive survey to serve as
a reference and directional guide to many fellow researchers
who wish to study pose estimation in the future.

REFERENCES

[1] W. Pang, C. Xia, B. Leong, F. Ahmad, J. Paek, and R. Govindan,
“UbiPose: Towards Ubiquitous Outdoor AR Pose Tracking using Aerial
Meshes,” in Proceedings of The 29th Annual International Conference
On Mobile Computing And Networking (Mobicom’23). ACM, Oct.
2023.

[2] L. Liu, H. Li, Y. Dai, and Q. Pan, “Robust and Efficient Relative Pose
With a Multi-Camera System for Autonomous Driving in Highly Dy-
namic Environments,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 8, pp. 2432–2444, 2017.

[3] J. Li, C. Xu, Z. Chen, S. Bian, L. Yang, and C. Lu, “HybrIK: A Hybrid
Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and
Shape Estimation,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 3383–3393.

[4] S. Kim and M. Kim, “Rotation Representations and Their Conversions,”
IEEE Access, vol. 11, pp. 6682–6699, 2023.

[5] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A Con-
volutional Neural Network for 6D Object Pose Estimation in Cluttered
Scenes,” arXiv preprint arXiv:1711.00199, 2017.

[6] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the Continuity
of Rotation Representations in Neural Networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 5745–5753.

[7] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Ros-
tamizadeh, and A. Makadia, “An Analysis of SVD for Deep Rotation Es-
timation,” Advances in Neural Information Processing Systems, vol. 33,
pp. 22 554–22 565, 2020.

[8] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy,
and J. Kelly, “A Smooth Representation of Belief over SO(3) for Deep
Rotation Learning with Uncertaintys,” arXiv preprint arXiv:2006.01031,
2020.

[9] C. Lin, A. J. Hanson, and S. M. Hanson, “Algebraically Rigorous Quater-
nion Framework for the Neural Network Pose Estimation Problem,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 14 097–14 106.

[10] S. Xiang, “Eliminating Topological Errors in Neural Network Rotation
Estimation Using Self-selecting Ensembles,” ACM Transactions on
Graphics (TOG), vol. 40, no. 4, pp. 1–21, 2021.

[11] I. Y. Bar-Itzhack, “New Method for Extracting the Quaternion from a
Rotation Matrix,” Journal of guidance, control, and dynamics, vol. 23,
no. 6, pp. 1085–1087, 2000.

[12] G. Shi, Y. Zhu, J. Tremblay, S. Birchfield, F. Ramos, A. Anandkumar,
and Y. Zhu, “Fast Uncertainty Quantification for Deep Object Pose Esti-
mation,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 5200–5207.

[13] D.-C. Hoang, J. A. Stork, and T. Stoyanov, “Voting and Attention-
Based Pose Relation Learning for Object Pose Estimation From 3D
Point Clouds,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
8980–8987, 2022.

[14] M. Kocabas, N. Athanasiou, and M. J. Black, “VIBE: Video Inference
for Human Body Pose and Shape Estimation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 5253–5263.

[15] P. F. Proença and Y. Gao, “Deep Learning for Spacecraft Pose Estimation
from Photorealistic Rendering,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 6007–6013.

[16] Y. Li, Y. Mao, R. Bala, and S. Hadap, “MRC-Net: 6-DoF Pose
Estimation with MultiScale Residual Correlation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 10 476–10 486.

[17] D. Rondao, N. Aouf, and M. A. Richardson, “ChiNet: Deep Recurrent
Convolutional Learning for Multimodal Spacecraft Pose Estimation,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 2,
pp. 937–949, 2022.

[18] V. Mollyn, R. Arakawa, M. Goel, C. Harrison, and K. Ahuja, “IMU-
Poser: Full-Body Pose Estimation using IMUs in Phones, Watches, and
Earbuds,” in Proceedings of the CHI Conference on Human Factors in
Computing Systems, 2023, pp. 1–12.

[19] S. Tripathi, L. Müller, C.-H. P. Huang, O. Taheri, M. J. Black, and
D. Tzionas, “3D Human Pose Estimation via Intuitive Physics,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2023, pp. 4713–4725.

[20] J. Li, K. Liu, and J. Wu, “Ego-Body Pose Estimation via Ego-Head Pose
Estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 17 142–17 151.

[21] T. Hempel, A. A. Abdelrahman, and A. Al-Hamadi, “6D Rotation
Representation For Unconstrained Head Pose Estimation,” in IEEE
International Conference on Image Processing (ICIP), 2022, pp. 2496–
2500.

468


