
Evaluation of Metaheuristic Algorithms for
TAS Scheduling in Time-Sensitive Networking

Junhong Min, MyoungJin Oh, Woongsoo Kim, Hyewon Seo, and Jeongyeup Paek
Department of Computer Science & Engineering

Chung-Ang University
Seoul, Republic of Korea

{dmc93, omjin7n, woongsu0614, hyewon981019, jpaek}@cau.ac.kr

Abstract—Time Sensitive Networking (TSN) is an emerging
technology for providing deterministic ultra low-latency network
based on Ethernet. It is designed for application domains such
as industrial automation where guaranteed latency is required
to meet the hard deadlines of flows. TSN achieves this by
carefully scheduling the transmissions of frames through the
IEEE 802.1Qbv standard, also known as time-aware shaper
(TAS). However, TAS scheduling problem is classified as NP-hard.
To overcome this challenge, we explore various metaheuristic
approaches using MEALPY, a state-of-the-art meta-heuristic
algorithm module of Python. We evaluate the meta-heuristic
algorithms for TAS scheduling optimization problem through
TSN simulations and provide observations for future directions.

Index Terms—IEEE 802.1Q, IEEE 802.1Qbv, Time-Sensitive
Network (TSN), Metaheuristic, MEALPY, Flow scheduling

I. INTRODUCTION

Ethernet is one of the most widely used network technolo-
gies in various fields. With the introduction of optical fiber
cables, today’s Ethernet can provide datarates of 100 Gbps.
However, due to its best-effort service characteristics, Ethernet
has no guarantee in latency despite the high datarate. There-
fore, proprietary Ethernet variants such as Profinet, EtherCAT,
or fieldbus technologies such as Profibus DP or Modbus-
RTU are used in industrial fields that require deterministic
communication with guaranteed arrival time. The problem is,
these technologies are incompatible with each other, not even
with the standard Ethernet, leading to multiple segmented
networks, limitations on supported devices, customer lock-in,
and eventually higher cost.

To address this problem, IEEE 802.1 working group [1]
launched Time-Sensitive Networking (TSN) task group [2] in
2012 to unify various proprietary Ethernet-based technologies.
TSN intends to provide deterministic ultra low-latency, low-
jitter, and zero congestion loss network required in industrial
domains such as factory automation, in-vehicle, and avionic
networks. With this goal, TSN standardized time-aware shaper
(TAS) in IEEE 802.1Qbv [3] (with a few other standards) to

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (2022R1A4A5034130
& 2021R1A2C1008840), and also by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2022-RS-2022-00156353) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation)

ABVBEST

O C C C C C C

.

.

.

.

.

.
: o,C,C,C,C,C,C,C
: C,o,o,C,C,C,C,C
: C,o,o,o,o,o,o,o
: o,C,C,C,C,C,C,C
: C,o,o,o,o,o,o,o
: o,C,C,C,C,C,C,C

.

.

Transmission Selec�on

CBS

Gate Control List
ST AVB AVB BE BE BEBE

CBS

Fig. 1. IEEE 802.1Qbv Time Aware Shaping

achieve deterministic low-latency via flow scheduling. How-
ever, these standards present only the necessity and outlines
of scheduling. Algorithm for actual flow scheduling is neither
defined nor suggested. Thus, TAS scheduling has emerged as
a major research topic in TSN.

Flow scheduling in TSN can be regarded as a flow-shop
problem. By default, TSN assumes that flows with specific
latency requirements are transmitted periodically, and provide
mechanisms considering the cycles of all flows to satisfy
latency requirements. As such, several prior works in the
literature suggest a constraint-programming (CP) approach.
CP defines the requirements of flows as constraints, and in
general, the number of flows and constraints are proportional.
However, computing resources and execution time required by
CP solvers grow exponentially rather than linear to the number
of flows. Therefore, the need for metaheuristic approaches that
provide reasonable running times is emerging.

In this work, we present packet size step scheduling (PSSS)
algorithm for no-wait scheduling of TAS flows, explore
scheduling optimizations through various metaheuristic ap-
proaches to solve the flow scheduling problem of TSN, and
evaluate the proposals using Meaply [4], a state-of-the-art
metaheuristic algorithm module in Python. Our work focuses
on the potentials of various metaheuristic approaches for TSN
flow scheduling optimization problem. According to our result,
metaheuristic algorithms from system-based and math-based
ideas generally have good performance. Artificial ecosystem-
based optimization [5] (system-based) achieves a performance
gain of up to 49% compared to other algorithms.

809978-1-6654-9939-2/22/$31.00 ©2022 IEEE ICTC 2022

II. RELATED WORK

Several prior works proposed CP-based methods for NP-
hard TAS scheduling problem, and found it difficult to provide
practical execution time for relatively large network topology
and flow sets [6]–[9]. According to the comprehensive TSN
survey by Seol et al. [10], metaheuristic-based algorithms are
proposed as practical alternatives to address TSN problems.
Macchiaroli et al. [11] proposed heuristic-based no-wait flow
scheduling which performs optimization through Tabu search
algorithm, and it is extended to no-wait TAS scheduling for
TSN by Dürr et al. [12]. Hellmanns et al. [8] proposed a two-
stage approach including a heuristic Tabu search algorithm,
and Reusch et al. [9] proposed a simulated annealing-based al-
gorithm to find a practical solution. However, these approaches
are limited to only a few metaheuristic algorithms. We explore
a variety of alternatives to seek for enhancements.

III. SYSTEM MODEL

In this section, we propose packet size step scheduling
(PSSS) algorithm for TSN flow scheduling, and consider var-
ious metaheuristic optimization strategies to improve schedul-
ing performance. We focus on no-wait flow scheduling [11],
[12] to minimize flow latency and prevent packet drops due
to buffer overflow.

A. TAS and Gate Control List

Fig. 1 illustrates how a switch handles scheduled flows
according to IEEE 802.1Qbv. Traffic classes are generally
categorized into audio video bridging (AVB), scheduled time-
critical (ST) (a.k.a. Time-Triggered (TT)), and best-effort (BE)
traffic. Transmission schedule for each class is stored in the
form of gate control list (GCL) which contains port state
information for each traffic class queue, either Close(c) or
Open(o). Transmission is permitted only when a queue is in
open state. ST traffic usually has a strict latency deadline,
and the TSN schedule expressed in GCL must satisfy this
requirement.

TSN considers periodic transmissions for time-critical
flows; i.e. all ST flows that require scheduling are assumed
to have periodicity. Thus it is possible to periodically repeat a
GCL schedule reflecting the periods of all ST traffic. A cycle in
which the schedule is repeated is called a hyper-period, and the
least common multiple of the cycles of all flows is generally
set as the hyper-period. Transmission plans of various traffic
types are included in the GCL schedule for the hyper-period,
which is reflected as information on port gate state control at
specific time Tn as shown in GCL in Fig. 1.

B. Flow scheduling

In the flow scheduling model of TSN, each flow must be
scheduled avoiding the transmission schedule of other flows.
Thus, time space within each hyper-period is limited. For
lower-latency, it is always preferred to transmit a flow at
the beginning of a hyper-period. But in reality, interference
between flows must be considered. Therefore, Dürr’s algo-
rithm et al. [12] performs scheduling at the earliest possible

50

1

3

Sc
he

du
lin

g
tr

y
ite

ra
�o

n

1
2
3

Time
0 10.24 μs 20.48 μs 30.72 μs

Schedule

500 μs

...

(max) 49

2

49

491.52 μs
.....

Fig. 2. Example operation of PSSS

1 (1 to 2)Sc
he

du
lin

g
tr

y
ite

ra
�o

n

Time
0

Compound
schedule

48
(max)

Link: 1 to 2

Link: 2 to 4

1 (2 to 4)

2(1 to 2)

2 (2 to 4)

48 (1 to 2)

48 (2 to 4)

49(1 to 2)

49 (2 to 4)

500 μs

1

2

.

.

.

481.28 μs

Fig. 3. Example operation of PSSS with multi hops

time. When a schedule collision occurs, the start time is moved
by the size of the collision, and the scheduling is repeated. This
method may cause frequent re-scheduling operations if there
are many packets scheduled previously, and can be a burden
in an environment where scheduling is re-tried a large number
of times (optimization process through repetitive scheduling).
Therefore, we introduce PSSS algorithm to reduce the number
of searches that find appropriate scheduling start time.

Fig. 2 depicts the scheduling operation of PSSS. PSSS de-
fers the start position as much as the transmission delay of the
packets to be scheduled at that start position when scheduling
is failed. When packet size is 128 bytes and link bandwidth is
100 Mbps, transmission delay is 10.24 µs. If the start position
of the first scheduling attempt is 0 µs, start position is changed
to 0 µs→10.24 µs→20.48 µs whenever the scheduling attempt
fails. Our scheme assumes that no transmission schedule can
go beyond the hyper-period. Therefore, if the hyper-period of
GCL is 500 µs, the maximum theoretical scheduling attempt
of a flow is 500/10.24. However, if the transmission path of a
flow is multihop, the number of actual meaningful scheduling
retries decreases as shown in Fig. 3. In addition, if there
is an additional scheduling time constraint according to the
transmission interval, the number of meaningful retries is
further reduced as shown in Fig. 4. Therefore, the maximum
number of flow scheduling Numsch is:

Numsch = �Interval Period÷Tx Delay�−Path length+1 (1)

810

25
24

Sc
he

du
lin

g
tr

y
ite

ra
�o

n

1
2
3

Time
0

Schedule

500 μs

...

(max) 24

250 μs

Second transmission scheduleFirst transmission schedule

1

3
2

25
24

1

3
2

Fig. 4. Example operation of PSSS with transmission interval

Fig. 5. NSF network topology

PSSS can reduce the potential maximum number of scheduling
tries by searching for a scheduling start position based on their
packet size.

C. Scheduling optimization

In heuristic flow scheduling, the performance may vary
depending on the order in which the flows are scheduled.
Scheduling order of flows can be expressed as a permutation,
and the optimization of flow scheduling is to find a scheduling
permutation (order) that allows as many flows to comply
with the transmission deadline requirement. This is one of
combinatorial optimization problems that are considered as
NP-hard, so metaheuristic-based approaches can be a practical
strategy. To this end, we introduce metaheuristic algorithms
that we intend to apply to TSN flow scheduling.

We first define the cost function and permutation to opti-
mize, and then perform optimization through various meta-
heuristic algorithms provided by Mealpy [4]. In our scheme,
the cost function is the number of flows that failed to be
scheduled, and the permutation is the order of flows that is
scheduled by PSSS. The lower the cost, the closer the solution
is to the optimum. Our work considers 28 metaheuristic
algorithms in seven categories on Table I, and this category
classification is based on Mealpy’s documentation [4] and
related literature [13].

IV. EVALUATION

We evaluate the optimization performance of metaheuristic
algorithms in Table I. Each metaheuristic algorithm considers
the scheduling result of PSSS as their cost, and performs flow
scheduling order optimization to reduce the cost.

TABLE I
METAHEURISTIC ALGORITHMS IN MEALPY

Algorithm type Algorithm name
Evolutionary Evolutionary Programming (BaseEP)

Evolution Strategies (BaseES)
Memetic Algorithm (BaseMA)
Genetic Algorithm (BaseGA)

Swarm Particle Swarm Optimization (BasePSO)
Bees Algorithm (BaseBeesA)
Ant Colony Optimization (BaseACOR)
Whale Optimization Algorithm (BaseWOA)

Physics Simulated Annealling (BaseSA)
Electromagnetic Field Opt. (OriginalEFO)
Atom Search Optimization (BaseASO)
Equilibrium Optimizer (BaseEO)

Human Culture Algorithm (OriginalCA)
Teaching Learning-based Opt. (OriginalTLO)
Brain Storm Optimization (BaseBSO)
Queuing Search Algorithm (OriginalQSA)

Bio Invasive Weed Optimization (OriginalIWO)
Biogeography-Based Opt. (OriginalBBO)

System Germinal Center Optimization (OriginalGCO)
Artificial Ecosystem-based Opt. (OriginalAEO)

Math Hill Climbing (OriginalHC)
Sine Cosine Algorithm (OriginalSCA)
Gradient-Based Optimizer (OriginalGBO)
Arithmetic Optimization Algorithm (OrginalAOA)

TABLE II
FLOWS SPECIFICATION

Flow type Size Interval deadline # of flows
ST1 64 bytes 0.2 ms 0.2 ms 100
ST2 128 bytes 0.5 ms 0.5 ms 100
ST3 196 bytes 1 ms 1 ms 100

A. Simulation setup

In our TSN scenario, the National Science Foundation
(NSF) network in Fig. 5 is used as the network topology and
TSN flows follow the specification in Table II. All links are
full-duplex with 100 Mbps bandwidth. We conduct simulations
for 30 minutes for each optimization algorithm on a worksta-
tion with Intel Core i7-8700 and 16GB memory. Our simulator
is implemented in Python 3.7, and we use Mealpy 2.4.2
for metaheuristic algorithms. For practical runtime (within
30 minutes), we set a population size (pop size) to 10 as
a default for each metaheuristic algorithm. Other parameter
settings follow the default settings of Mealpy except when they
cause errors. In those cases (BaseMA, BaseACOR, BaseBSO,
OriginalWO, OriginalHC), we set pop size to 50.

B. Simulation results

Fig. 6 shows the best cost of each algorithm. The best cost
means the lowest cost obtained from the optimization process.
According to Fig. 6, system-based and math-based algorithms
show uniformly good optimization performance. Although our
simulation does not represent all algorithms in each category,
we can expect that it would be relatively good to use the
system and math-based metaheuristic algorithms for TSN
scheduling optimization. In particular, Artificial Ecosystem-
based Optimization (OriginalAEO) achieves a lower cost of
up to 49% compared to other algorithms.

811

	
�
$
�
�
�

	
�
$
�
�
�

	
�
$
�
�
�

	
�
$
�

�

	
�
$
�
�
�
�

	
�
�
$
�

	
�
$
�
�

�
�

	
�
$
�
�
�
�

	
�
$
�
�
�

�
#
�
�
�
!
�
�
�
�
�

	
�
$
�
�
�
�

	
�
$
�
�
�

�
#
�
�
�
!
�
�

�

�
#
�
�
�
!
�
�
�
�
�

	
�
$
�
	
�
�

�
#
�
�
�
!
�
�
�
�
�

�
#
�
�
�
!
�
�
�
�
�

�
#
�
�
�
!
�
�
	
	
�

�
#
�
�
�
!
�
�

�

�
#
�
�
�
!
�
�
�
�
�

�
#
�
�
�
!
�
�
�

�
#
�
�
�
!
�
�
�

�

�
#
�
�
�
!
�
�

	
�

�
#
�
�
�
!
�
�
�
�
�

�

��

��

��

��

���

���

	
�
$
%
�
�
"
$
%

�'"�&%�"!�#)

�(�#

��)$��$

�& �!

	�"

�)$%�

��%�

Fig. 6. Best cost of each algorithm

� �	� 	�� �	� ���� ��	� �	�� ��	�

&�!��%�

��

�

��

���

���

�
'
$
$
�
"
&
�
�
�
%
&
�
�
#
%
&

�(# '&�#"�$*�����%��

�)�$!�����%���

��*%��%�����%���

�'!�"����$���"� ���

��#����$���"� ���

�*%&�!����$���"� ��

��&�����$���"� �

Fig. 7. Best cost over execution times

Fig. 7 shows the best cost changes over time for the seven
algorithms that showed the best results in each category. This
result shows that OriginalAEO returns a better solution (lower
cost) than all other metaheuristic algorithms in a short execu-
tion time of 163.9 seconds. It is the second fastest convergence
speed among the seven metaheuristics in Fig. 7. This means
that OriginalAEO is superior not only in solution quality but
also in optimization speed. Also, math-based OriginalAoA
shows relatively superior convergence speed compared to other
algorithms.

Our results show the potentials of each metaheuristic ap-
proach in TSN schedule optimization scenarios, and strongly
implies that Artificial Ecosystem-based Optimization can be a
plausible strategy.

V. CONCLUSION

We presented packet size step scheduling (PSSS) algo-
rithm for no-wait TAS scheduling in TSN, and explored
and evaluated various metaheuristic algorithms as an opti-
mization method. Our evaluation results provide observations
on the direction of the metaheuristic algorithms for TSN
flow scheduling. As our future work, we intend to design
an algorithm for solving joint routing and TAS scheduling
problem using metaheuristic algorithms based on the findings
from this work.

REFERENCES

[1] “IEEE 802.1 Working Group,” 2021, [last accessed Jul. 2022]. [Online].
Available: https://1.ieee802.org/

[2] “IEEE Time-Sensitive Networking Task Group,” 2017, [last accessed
Jul. 2022]. [Online]. Available: http://www.ieee802.org/1/pages/tsn.html

[3] IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic, IEEE Std. 802.1Qbv-2015, pp. 1-57, 2016.

[4] N. V. Thieu, “A collection of the state-of-the-art MEta-heuristics
ALgorithms in PYthon: Mealpy,” 2020, [last accessed Jul. 2022].
[Online]. Available: https://doi.org/10.5281/zenodo.3711948

[5] W. Zhao, L. Wang, and Z. Zhang, “Artificial ecosystem-based op-
timization: a novel nature-inspired meta-heuristic algorithm,” Neural
Computing and Applications, vol. 32, no. 13, pp. 9383–9425, 2020.

[6] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations
of joint routing and scheduling for TSN with ILP,” in 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, pp. 136–146.

[7] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 42–47, 2018.

[8] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and F. Dürr,
“Scaling TSN scheduling for factory automation networks,” in 2020
16th IEEE International Conference on Factory Communication Systems
(WFCS). IEEE, pp. 1–8.

[9] N. Reusch, S. S. Craciunas, and P. Pop, “Dependability-aware routing
and scheduling for Time-Sensitive Networking,” IET Cyber-Physical
Systems: Theory & Applications, 2022.

[10] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely Survey of
Time-Sensitive Networking: Past and Future Directions,” IEEE Access,
vol. 9, pp. 142 506–142 527, 2021.

[11] R. Macchiaroli, S. Mole, and S. Riemma, “Modelling and optimization
of industrial manufacturing processes subject to no-wait constraints,”
International Journal of Production Research, vol. 37, no. 11, pp. 2585–
2607, 1999.

[12] “No-wait packet scheduling for IEEE time-sensitive networks (TSN),
author=Dürr, Frank and Nayak, Naresh Ganesh,” in Proceedings of the
24th International Conference on Real-Time Networks and Systems,
2016, pp. 203–212.

[13] T. Nguyen, G. Nguyen, and B. M. Nguyen, “EO-CNN: an enhanced
CNN model trained by equilibrium optimization for traffic transportation
prediction,” Procedia Computer Science, vol. 176, pp. 800–809, 2020.

812

