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Abstract—The vehicle is becoming a computing platform
rather than mechanical machinery. Vehicles are now being
equipped with advanced electronic functions such as autonomous
driving, in-vehicle infortainment (IVI), and driver assistant sys-
tems together with communication capabilities. To this end, stud-
ies on open platforms for vehicles to resolve dependencies between
vehicle software and hardware have been actively conducted. In
this paper, we first investigate the research on representative
vehicle operating systems and software platforms, Automotive
Open System Architecture (AUTOSAR) and Connected Vehicle
Systems Alliance (COVESA). We review academic research pa-
pers published by major academic publishers and categorize
them according to their purposes. We also investigate recent
research trends on open vehicle platforms by major automobile
companies and research institutes to provide insight into future
directions for next-generation mobility.

Index Terms—OSEK/VDX, AUTOSAR, COVESA, SOME/IP,
Autonomous Vehicle Platform

I. INTRODUCTION

Vehicle, conventionally a simple means of transportation,
is becoming our personal space today. With this paradigm
shift, In-Vehicle Infotainment (IVI) system is expanding to
serve the new features in terms of time and space beyond the
existing roles of vehicles. In addition, technologies fused with
sensors such as human machine interface (HMI) or advanced
driver assistance systems (ADAS) are being actively developed
to enhance driver safety and convenience. In these systems,
various functions are controlled by multiple electronic control
units (ECUs) with different operating systems. Therefore, as
function more diversity, it is inevitable to install additional
ECUs in the vehicle to support them. However, adding ECUs
is not only practically difficult due to the space constraint but
also increases operational complexity and management costs.
For this reason, the need to integrate the technical standards
for vehicle systems have emerged.

To improve the portability and reusability of applica-
tion software, OSEK/VDX1standardized the operating system
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1In 2005, OSEK/VDX is combined OSEK and VDX developed in Germany
and France respectively.

(OSEK OS), communication stack (OSEK COM), and net-
work protocol (OSEK NM) targeting in-vehicle embedded
systems [1]. However, OSEK/VDX is inadequate to become
the foundation of a standard platform due to compatibility
issues that require software to be developed according to
the hardware design of each ECU manufacturer. With the
goal of providing standardized software architecture, the au-
tomotive open system architecture (AUTOSAR) development
partnership was concluded in 2003 [2]. AUTOSAR is actively
working to improve the electric/electronic architecture and
uses middleware to resolve hardware dependencies through
layer separation and virtualization. Connected vehicle systems
alliance (COVESA) recognized the necessity of the connected
car specialized platform and was established in 2016 actively
share data between different manufacturers’ vehicles [3]. They
provide the open source vehicle platform to eliminate vendor
dependencies, aiming to integrate computing domains of IVI
systems on vehicles.

Vehicle platforms have become a popular topic in both
industry and academia. To understand the recent research
directions and trends, in this work, we review the research
papers and categorize these studies according to the topic and
purpose. We also show the current state of vehicle platform
development in industrial fields. To the best of our knowledge,
there is no comprehensive study about vehicle platforms yet.
We believe that our work provides introductory information
about vehicle platforms.

II. OVERVIEW

In this section, we describe the representative vehicle plat-
forms, AUTOSAR and COVESA, and provide an overall
understanding of them.

A. AUTOSAR

AUTOSAR proposes automotive standard software archi-
tecture for eliminating hardware dependency and increas-
ing software scalability. We introduce architecture and key
specifications for classic and adaptive platforms provided by
AUTOSAR, summarizing the differences between the two
platforms in Table. I.

Classic platform (CP) separates between a basic software
layer (BSW) and an application layer through a runtime
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Fig. 1. AUTOSAR Classic and Adaptive platform architectures.

TABLE I
SUMMARY OF THE DIFFERENCE BETWEEN CLASSIC AND ADAPTIVE

Specification
Platform Classic Adaptive

ECU ECU allocation
per function domain

Centralized
processing

OS RTOS POSIX

Task Developer-defined
static foundation

Dynamic foundation
by operating system

Resource Static allocation Dynamic allocation
Communication

method Signal-oriented Service-oriented

S/W supporting No software added
or updated

Support for adding
and updating software

environment (RTE, a middleware), which allows platforms
to independently implement different applications. Fig. 1(a)
shows the overall architecture of AUTOSAR CP. Software
components (SWCs) in the application layer intercommunicate
using the virtual-function bus (VFB). CP uses signal-oriented
communication based on static resource allocation over a bus
network (i.e., CAN, LIN, and FlexRay) for interoperating
between each ECU.

AUTOSAR CP reflects the standards by OSEK/VDX, and
mechanisms have been extended to accommodate more func-
tions. For instance, OSEK OS is adopted to support functions
on the OS, such as resource and event management, alarms,
counters, and error handling. After release 4.0, AUTOSAR
added a specification for a multi-core embedded real-time
operating system (RTOS) that can simultaneously perform
different functions as advanced vehicles evolve. At the heart of
this specification is the spinlock mechanism for synchronizing
tasks between cores, whether or not each CPU core is identical.
For network reliability and stability, CP provides network
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Fig. 2. COVESA (GENIVI) Platform architecture.

management (NM) mechanisms, which include OSEK NM
(direct/indirect NM) and AUTOSAR NM (CAN NM). Direct
NM allows nodes to check each other status by sending
management messages in a token-based logical ring method.
On the other hand, indirect NM periodically sends application
messages to check the status of nodes attached to a network.
In the case of CAN NM, it is based on periodic message
transmission but has several modes of operation, such as
(Prepare) Bus-sleep mode and network mode (repeat message
state, normal operation state, and ready sleep state).

AUTOSAR also has provided a specification for a time
synchronization mechanism based on IEEE 802.1AS [4],
achieving the precise time synchronization of all ECUs con-
nected over Ethernet. The objective of the specification is
to synchronize time bases and their corresponding Ethernet
messages. Above this, AUTOSAR has standardized crypto-
graphic stacks to model keys in software and use cryptographic
services for cybersecurity. It is applied to the Secure Onboard
Communication (SecOS) module to manage the key and is
used to verify in-vehicle communication between ECUs [5].

Adaptive Platform (AP) developed to overcome the limita-
tions of CP, because signal-based communication directed by
the CP platform may cause a problem of network overload.
It provides high-performance computing power and flexible
communication for the infotainment of future mobility sys-
tems. As shown in Fig. 1(b), the intermediate layer of the AP
consists of three basic services (gray box) and eight functional
clusters (written as API). Three basic services provided by
middleware called an ara::com and eight functional clusters
communicate with other applications through each API.

With the introduction of AP, the biggest difference be-
tween the two platforms is the communication method. The
AP adopts a service-oriented communication method that
supports the Scalable service-Oriented MiddlewarE over IP
(SOME/IP) protocol [6]. SOME/IP is an automotive/embedded
communication protocol that supports event notifications, the
underlying serialization/wire format, and remote procedure
calls. SOME/IP also is used for client/server serialization
between ECUs. It can be applied to other operating systems
(i.e., AUTOSAR, COVESA, and OSEK), and even to embed-
ded devices that do not have an operating system.

The AP uses the portable operating system interface
(POSIX) [7]. Compared to RTOS, it has much higher com-
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putational processing power, and multi-core process support
makes automotive software development much more flexible.

B. COVESA

In the past, several systems such as ADAS and IVI distribute
to separate computing domains. In 2016, COVESA appeared
to drive each of these computing domains into the integrated
platform, toward an open standard community. The COVESA
platform is based on open source provided by the Linux
Foundation for 80 % of the current underlying platform, with
about 15 % modifications and complements to other existing
open source modules to IVI. Only 5 % of modules were
developed specifically for vehicles by COVESA. Fig. 2 shows
overveiw of COVESA.

III. LATEST RESEARCH TREND

In this section, we introduce the studies that have con-
tributed to the advancement of vehicle platforms. We cat-
egorize these studies into five subtopics according to the
purpose (i.e., what were they trying to optimize or improve)
and provide a summary of research trends by category in
‘academia’ field in the Table. II.

A. Task and Network Management

As the complexity of automotive ECU networks increases,
there are considerations. First, multi-core systems are an
alternative to running various functions in parallel to mini-
mize power consumption and complete faster than single-core
CPUs. AUTOSAR constitutes a mechanism that allows tasks
to be mapped to other cores while the memory exchanged be-
tween tasks is usually protected by a spinlock. Unfortunately,
the spinlock mechanism is essentially used only for short
critical sections. Thus, R. Hottger et al. [8] proposes Time-
Release-Delta-based Runnable Reordering (TDRR). TDRR
provides a viable sequence for tasks to reduce busy latency
depending on specific system conditions. At the same time,
TDRR also considers feasible dependencies, so functional
behavior is maintained and re-verification is not required.

Preemption Threshold Scheduling (PTS) is an effective
technique to reduce stack memory usage by selectively dis-
abling proactive between task pairs. Q. Zhao et al. [9] specifies
the following two algorithms to minimize stack use of mixed
systems using PTS in the AUTOSAR model;

• PA-DMMPT assigns the current priority to the task with
the largest blocking time limit among the remaining
tasks. This assigns the one with the smallest reduction
in interference from higher priority tasks if the blocking
time limit for all tasks are negative.

• HeuPADMMPT based on Heuristics defines priority al-
location on the basis of PA-DMMPT and then explores
task merge opportunities.

Second, real-time network management is one of the most
important mechanisms for ensuring communication safety
between ECUs. As the number of ECUs mounted on ve-
hicles increases significantly, the complexity of the network
increases. Consequently, the number of nodes to be connected

increases, and the probability of network failure occurrence
is higher as variable functions are added. Therefore, wei et
al. [10] proposes a dynamic network management framework
based on the OSEK NM protocol so that it can automatically
adapt to unstable network loads. When the network load has
occurred, the dynamic framework is complete by using it as a
core parameter of the network management mode. They also
add a method for calculating thresholds for appropriate loads.
There are two main methods of obtaining load values (Counter
based and Packet capturing). Due to fundamental real-time
constraints in mission-critical components in an automotive
network, the latter requires more resources than the former.
Accordingly, the authors of this paper adopt the counter-based
method and the most famous network load measurement is
periodic measurement. Consequently, in the paper, the network
load is defined by the total number of messages transmitted
from the network at a specific time zone. In summary, it is
possible to dynamically switch the network management mode
by measuring the current network load. Based on this, the
proposed framework meets the necessary network information
gathering requirements without sacrificing the performance of
the vehicle ECU network. A conventional OSEK NM network
system is based on a static logical ring and cannot adaptively
adjust work performance according to changes in network
load. Therefore, wang et al. [11] present the Logical Ring
Dynamic Adjustment Algorithm (LADR); that Dynamically
adjusts the radius of different logical rings by varying the
length of the timer after analyzing the operating mechanism of
OSEK NM. In this mechanism, they have used two network
load flavors (average load and momentary load) and Moni-
toring periodic network load systems. Then, set the mapping
relationship between the instantaneous load factor of the BUS
network and the radius of the logical ring to ensure optimum
performance.

B. Co-operability

Research is underway to evaluate the interoperability of
communication standards and present solutions in different
operating systems adopted by each company. M. Bellanger et
al. [12] suggest guidelines for ensuring compatibility between
AUTOSAR and COVESA based on SOME/IP (respective
middleware ara:com and COMMONAPI), a communication
standard used in the automotive industry. Since both orga-
nizations use SOME/IP communication, the Linux API is
guaranteed, but another critical operating system to consider
here is Android. Both the APIs of Android and Linux imple-
ment the same communication protocol at the bottom layer,
but the difference in the serialization of payload data at the
runtime layer is still likely to cause problems. Thereby, L.
Bilac et al. [13] specify Android’s API implements the SWC
(Communication Manager) on the ADAS side to see if this
communication is possible.

C. Security

The Internet of Vehicles (IoV) plays a very critical role in
the field of intelligent transportation. The in-vehicle network is
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TABLE II
SUMMARY OF LATEST RESEARCH TRENDS AND ENTERPRISE

Sortation Category Summary Reference

Academia

Task and Network
Management

Presents methods and algorithms for multi-core OS
and network load management. [8], [9], [10], [11]

Co-Operability Interoperability between different operating systems. [12], [13]
Security CAN protocol security study for complex network improvement. [14], [15], [16]
Energy

Consumption Plan to meet overall power requirements with limited resources. [17], [18]

Synchronization Develop a way to correlate different timestamps. [19]

Industry

Motional E-GMP generation and commercialization test of its
own electric vehicle platform. [20]

Tesla Create Tesla’s own OS and platform for ADAS.
It has the most data among autonomous vehicle companies. [21]

Toyota e-Palette, a multi-purpose modular electric vehicle.
Partnerships with various companies to promote commercialization projects. [22]

Baidu Introducing the real-time motion planning system, learning-based
vehicle dynamic modeling procedure. [23], [24]

a key in intelligent transportation consisting of CAN. However,
a malicious attacker can exploit a security loophole in the
CAN protocol to cause a deliberate malfunction. Concerned
about the validity of the issue, H. Zhang et al. [14] high-
lighted the vulnerability of CAN protocols that threaten the
safety of drivers and occupants due to several vulnerabilities
without encryption, authentication, and integrity checks. To
compensate for this problem, P. Biondi et al. [15] presents
TOUCAN, a security protocol, in compliance with AUTOSAR
”Secure Onboard Communication”, profile 1, standard. TOU-
CAN leverages the Chaskey MAC (Message Authentication
Code) to provide authentication and integrity to CAN frames
[16].

D. Energy Consumption

It is important to meet the power requirements to develop
automated embedded systems with limited resources. N. Mah-
mud, G et al. [17] aim to minimize the total power con-
sumption of applications distributed across multiple computing
devices. For this work, they stipulate Integer Linear Program-
ming for the allocation of fault-tolerant developed using the
AUTOSAR standard. Kehr et al. [18] also present a practical
parallelism approach technique called Parcus to demonstrate
the energy-saving potential of multi-core processors.

E. Synchronization

Most synchronizations are used in time relationships and
also help identify in-vehicle networks. Raju et al. [19] utilize
multiple data logging devices and time synchronization dis-
tributed over the vehicle network for its on-board fault diagno-
sis system. If time synchronization between Time Master and
Time Slave is successful, the synchronized moments are used
to filter fault data logging. The time synchronization mecha-
nism used in this paper enables offline analysis by establishing
a meaningful temporal relationship between timestamps in the
defected record.

IV. INDEPENDENT PLATFORM DEVELOPMENT TRENDS

There are also many efforts to develop a platform suitable
for autonomous vehicles. S.-C. Lin et al. [25] presented the
design constraints for building autonomous driving systems in
terms of performance, power, and so on. To find trade-offs
between the designing and building of autonomous driving
systems, they implement the representative end-to-end system
by using state-of-the-art algorithms (award-winning) and iden-
tify the actual design constraints of systems [26]. They also
reduced the tail latency of the system by using acceleration
systems such as GPU, FPCA, and ASIC.

Furthermore, many vehicle manufacturers are working on
the development of their platforms to prepare for fully au-
tonomous driving in the future. In this section, we examine the
recent vehicle platform trends for autonomous driving with a
focus on the industrial field; The ‘industry’ field in the Table. II
summarizes the current state of the manufacturers.

• Motional: The electric global modular platform (E-
GMP) is a platform dedicated to electric vehicles that
leads Hyundai Motor Group’s development of the next-
generation electric vehicle. The free battery module
configuration to match the car class, car model, and
customer’s lifestyle provides a foundation for running
longer distances. In particular, Ioniq 5, which has self-
driving level 4, has recently started self-driving delivery
for Uber Eats customers in Santa Monica, California [20].

• Tesla: Tesla launched Autopilot, a semi-autonomous
driver support technology, in 2014. Since then, it has
supported software updates for ADAS. In particular,
Tesla has an overwhelming amount of self-driving data
compared to other companies. Through this, it has already
established its operating system. It also provides its au-
tonomous driving platform, and car owners can remotely
upgrade their software. Above all, once the StarLink
project is complete, it will be possible to download the
latest software or use various functions anywhere [21].

• Toyota: The vision of the ‘e-Palette Concept’ that can
show Toyota’s future mobility strategy was announced at
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CES 2018. e-Palette is a multi-purpose modular electric
vehicle that can provide necessary mobility services in
various industries by utilizing connected and autonomous
driving technologies [22]. In addition, to strengthen the
platform, it has formed partnerships with companies such
as Amazon, Pizza Hut, and Uber to push for projects from
the service planning stage to the commercialization stage.

• Baidu: H. Fan, F et al. [23] introduced a real-time
motion planning system based on China’s Baidu Apollo
autonomous driving platform. The paper deals with au-
tonomous driving for multiple lanes and single lanes in
a hierarchical manner. The described system has been
distributed to dozens of Baidu Apollo autonomous ve-
hicles since Apollo 1.5 was announced in September
2017. We also introduce a highly automated learning-
based vehicle dynamic modeling procedure for large-
scale vehicle dynamics modeling on the Baidu Apollo
platform [24].

V. CONCLUSION

Tremendous effort on development of integrated au-
tonomous vehicle platform are underway in both industry
and academia. Along with its functional strengths of in-
teroperability and software integration, the fact that it is
based on Ethernet, which is drawing attention as a next-
generation vehicle communication, has endless possibilities.
With these advantages, AUTOSAR and COVESA are expected
to contribute to providing platform standards that will serve as
the foundation for future leading technologies for intelligent
transportation systems. Throughout this paper, we conducted
a comprehensive survey, including materials in addition to
reference publications, which is the first of its kind to our
knowledge. We aim this paper to serve as a pointer and
directional guide to many fellow researchers who wish to study
autonomous vehicle platform in the future.
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[8] R. Höttger, B. Igel, and O. Spinczyk, “On reducing busy waiting in
AUTOSAR via task-release-delta-based runnable reordering,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2017, pp. 1510–1515.

[9] Q. Zhao, Z. Gu, and H. Zeng, “Design optimization for AUTOSAR
models with preemption thresholds and mixed-criticality scheduling,”
Journal of Systems Architecture, vol. 72, pp. 61–68, 2017.

[10] C. Wei, M. Yao, P. Lu, Q. Hu, and N. Zheng, “OSEK/VDX-based
dynamic network management on automotive network,” in 2009 Inter-
national Conference on Embedded Software and Systems. IEEE, 2009,
pp. 131–137.

[11] Y. Wang, B. Pan, Y. Li, F. Huang, and Z. Guo, “Real-time dynamic
logic loop mechanism of vehicular network management based on
instantaneous load sensing,” in 2019 12th International Symposium on
Computational Intelligence and Design (ISCID), vol. 2. IEEE, 2019,
pp. 27–30.

[12] M. Bellanger and E. Marmounier, “Service Oriented Architecture:
impacts and challenges of an architecture paradigm change,” in 10th
European Congress on Embedded Real Time Software and Systems
(ERTS), 2020.

[13] L. Bilac, D. Stanisic, D. Kenjic, and M. Antic, “One Solution of
an Android In-Vehicle Infotainment Service for Communication with
Advanced Driver Assistance System,” in 45th Jubilee International
Convention on Information, Communication and Electronic Technology
(MIPRO). IEEE, 2022, pp. 1420–1425.

[14] H. Zhang, X. Meng, X. Zhang, and Z. Liu, “CANsec: a practical
in-vehicle controller area network security evaluation tool,” Sensors,
vol. 20, no. 17, p. 4900, 2020.

[15] P. Biondi, G. Bella, G. Costantino, and I. Matteucci, “Implementing
CAN bus security by TOUCAN,” in Proceedings of the Twentieth ACM
International Symposium on Mobile Ad Hoc Networking and Computing,
2019, pp. 399–400.

[16] N. Mouha, B. Mennink, A. V. Herrewege, D. Watanabe, B. Preneel,
and I. Verbauwhede, “Chaskey: an efficient MAC algorithm for 32-
bit microcontrollers,” in International conference on selected areas in
cryptography. Springer, 2014, pp. 306–323.

[17] N. Mahmud, G. Rodriguez-Navas, H. Faragardi, S. Mubeen, and C. Se-
celeanu, “Power-aware allocation of fault-tolerant multirate autosar
applications,” in 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2018, pp. 199–208.
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