Introduction of LoRa & Challenges

LoRa & Chirp Spread Spectrum
- LoRa attracts attention as one of the key wireless technology for IoT owing to its capability to cover a wide area with low power consumption.
- LoRa uses ‘Chirp Spread Spectrum (CSS)’ for low-power and long-range communication.
- CSS embeds data into an up-chirp with frequency shift, and extracts using a down-chirp. (de-chirp)
 - Up-chirp: a chunk of frequency that linearly increases over time
 - Down-chirp: a chunk of frequency that linearly decreases over time

Decoding Failure in Collision
- CSS’s modulation and demodulation includes the following step.
 1. Start frequency index of an upchirp represents a data symbol.
 2. Transmitter sets the start frequency according to the data and transmits.
 3. Receiver multiplies received signal with a downchirp. (de-chirp)
 4. Fast Fourier Transform (FFT) is applied to the de-chirped signal.
 5. Index of FFT bin peak represents a demodulated data symbol.
- Since a chirp consecutively increases frequency, a collision of two chirps leads to less distinction in FFT bin height between superposed symbols.
- Ambiguity will be more severe as the collision offset (Δt) gets narrower.

FH-CSS: Frequency Hopped Chirp Spread Spectrum

Energy Scattering Effect
- Proposed Scheme, FH-CSS, leverages the observation that the energy of de-chirped signal spreads out if chirps are not a counter part of each other.

Aligned scenario

Misaligned scenario

- A misaligned chirp has less FFT bin height while the aligned chirp peaks.
 → FH-CSS can resolve collisions without additional signal processing technique.

Design Issues
- To support real-time PHY-rate decoding with high reliability, FH-CSS has several challenges.
 - Synchronization/Alignment
 - FH-CSS receiver can decode only if the demodulation window aligns with a frequency-hopped chirp.
 - Initial proof-of-concept implementation uses a brute-force linear search.
 - Number of sub-chirps
 - Higher number of sub-chirps provide better robustness to collisions, but it is more susceptible to noise.
 - Frequency hopping pattern
 - It should ensure that FH-CSS has ‘different level of changes’ between adjacent hopping patterns so that they are better distinguishable.

Evaluation

Implementation
- We implement FH-CSS and standard CSS in GNU Radio using an open source LoRa library, and conduct experiments on USRP B200 SDR.
- To conduct packet collision experiments with precisely controlled collision offsets, we built a LoRa transmitter to mix two modulated signals with deterministic delay in software.

Preliminary Results
- SF: 8 / Packet Interval: 100ms / # of Packets: 100 / # of Freq.hop: 16 / Collision Offset Range: [0, 256] (≈ 2^SF, within a chirp)
- Standard CSS has less than 10% decoding rate on average.
- FH-CSS maintains ~90% decoding success rate for almost collision offsets.